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Foreword

Ironically, it was in Waterloo that the STL was adopted as part of the ISO/ANSI Stan-
dard C++ Library, and from that day on it went onto a triumphal march. Alexander
Stepanov and Meng Lee had proposed the result of years of research at Hewlett-
Packard, a standard template library, to the standards committee. The committee
gracefully adopted the STL as part of the C++ Standard at a committee meeting in
Waterloo in the summer of 1994, after countless controversial discussions and much
work spent by committee members on making the STL fit for a standard. Most
importantly, the adoption was tied to the condition that the source code had to be
made publicly available. Since then the STL has become more and more popular in
the C++ community and conquered the hearts of quite a number of programmers.
Personally, | know of software developers who cannot imagine getting their work
done anymore without a general-purpose library like the STL. Obviously, not all
Waterloos are the same. This Waterloo was in Ontario — seemingly a good omen.

Much of the merit, however, is not seriously due to picking the right location
for presenting a library. The STL is an invaluable foundation library that makes
programmers more productive in two ways. It contains a lot of different components
that can be plugged together, so it provides a flexible and extensible framework.
Plus, it has an elegant, consistent, and easy to comprehend architecture.

When Ulrich asked me in fall 1995 whether | would feel like writing this book
with him, my first thought was: Does the world really need another STL book?
Three books had already been out at that point in time; | had volunteered for writing
a regular column about the STL for a magazine of high renowrQike Report, nu-
merous conference organizers invited me to speak about the STL; even my employer
had me prepare and conduct courses on the STL. In sum, there were countless re-
sources available to meet the growing interest in the C++ community. | simply ques-
tioned the need for yet another STL tutorial. About a year later, | held the German
edition of his book in my hands, skimmed through the pages, and started reading —
with increasing enjoyment. And | must admit, he convinced me. This book goes
beyond the tutorials | had seen up to then and has an approach and appeal of its own:
it explains techniques for building your own data structures and algorithms on top of
the STL and this way appreciates the STL for what it is — a framework. | had been
looking for this aspect in tutorials, often in vain.

As can be expected, the book starts off with an introduction to the STL. Already
the initial explanations provide you with insights into the internals of the STL that
you miss in other introductory material. For instance, Ulrich explains what the im-
plementation of an iterator typically looks like. This kind of information is profound
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enough to lay the foundations for leaving the realm of simple STL usage, and en-
ables you to understand and eventually extend the STL framework by adding your
own containers and algorithms. The most distinguishing part of this book is Part IlI:
Beyond the STL. You will see demonstrations of elegant and sophisticated usage of
the STL — well-known data structures like matrices and graphs built on top of the
STL, as well as examples of additions to the STL, like hash-based containers.

I would also want to acknowledge that this revised English edition of the book is
one of the most accurate and up-to-date sources of information on the STL currently
available. It reflects the ISO/IEC C++ Standard which was published in September
1998. Keep up with the language standard and learn how the STL will improve
your programs. In sum, | enjoyed the book and appreciate it as a sound and serious
reference to the STL. | hope you will also.

Angelika Langer
June 1999
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The Standard Template Library (STL)

One reason for the success of C++ is that today a large number of libraries is available
on the market which greatly facilitate the development of programs, because they of-
fer reliable and well-proven components. A particularly carefully constructed library
is theStandard Template Libraryhich has been developed at Hewlett-Packard by
Alexander Stepanov, Meng Lee, and their colleagues. It has been accepted by the
ANSI/ISO committee as part of the C++ Standalel{ ).

The emphasis of the STL is on data structures for containers, and the al-
gorithms that work with them. The technical reference document of the STL
( )-has practically, with some modifications, become a part
of the C++ StandardI ). Both are the basis for the first two parts
of this book. The document can be freely used, if the copyright conditions are
guoted. These conditions plus references to sources can be found at/gade¢he
Appendix.

The C++ Standard Library and the STL

The STL does not include the entire C++ Standard Library nor all its templates; it
represents, however, the most important and most interesting part. The C++ Standard
Library includes several areas:

e Generic data structures and algorithms
— containers
— algorithms
— iterators
— functional objects

¢ Internationalization
¢ Diagnosis (exceptions)

e Numeric issues
— complex numbers
— numeric arrays and related operations
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e Input and output library (streams)

e Miscellaneous
— memory management (allocators) and access
— date and time
— strings

The area shaded in gray constitutes the subject of this book — in other words,
the book does not deal with the historic STL, but with that part of the C++ Standard
Library that has originated from the STL. Besides an introduction, the emphasis is
on sample applications and the construction of new components on the basis of the
STL.

Owing to several requirements by the ISO/ANSI standard committee, this part
of the C++ Standard Library no longer matches the original STL exactly. Thus, a
more precise — albeit too long — title for this book would ®eneric algorithms
and data structures of the C++ Standard Library — introduction, applications, and
construction of new componenfBhe changes affect only some details, but not the
concept; therefore the nan8tandard Template Librargnd the abbreviation STL
have been retained.

The STL as a framework

The STL is an all-purpose library with an emphasis on data structures and algorithms.
It makes heavy use of the template mechanism for parameterizing components. The
uniform design of the interfaces allows a flexible cooperation of components and
also the construction of new components in STL-conforming style. The STL is
therefore a universally usable and extendable framework, which offers many advan-
tages with respect to quality, efficiency, and productivity. The successful concept
has already been copied, as the Java Generic Library shows.

Aims of this book

The book has two aims. As a technical reference, the reference document mentioned
earlier is hardly suited to explain the concepts of the STL. Therefore, the first aim is
to present how the STL can be used in a sensible way. Internal details of the STL
are described only to the extent needed to understand how it works.

However, this book is more than a simple introduction. With the aid of compre-
hensive examples, the STL is presented as a tool box for the construction of more
powerful and sometimes even faster components. These components are more com-
plex data structures and algorithms which can be efficiently implemented by means
of the modules contained in the STL. The algorithms are evaluated with respect to
their run time behavior relative to the amount of data to be processed (time com-
plexity). However, not only the modules themselves and their combination are of
interest, but also the programming techniques employed in the STL and in this book.
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Readership

This book is intended for all those involved in the development of software in C++,
be they system designer, project manager, student of computer science, or program-
mer. To make the software portable, maintainable, and reusable, it is highly recom-
mended that valid standards are adhered to and thoroughly exploited — otherwise,
they would not be needed. The use of prefabricated components such as those of
the STL increases both the reliability of the software and the productivity of the
developers. The precondition for understanding this book is knowledge of the C++
programming language and its template mechanisms which can be gained by reading
good text books on the subject, such.&s

Structure of the book

The book is divided into three parts. Part | is an introduction to the STL and describes
its concepts and elements, with the emphasis on iterators and containers. The con-
cept of iterators and containers is essential for the working of the algorithms.

Part Il discusses the standard algorithms, where almost every algorithm is illus-
trated with an example. Because of the large number of algorithms described, it
should be viewed as a catalog.

Part 11l describes applications and extensions. Extensive examples help to show
how the components supplied by the STL can be used to design more complex data
structures and algorithms and powerful abstract data types.

Examples

Not only is the functioning of STL elements described, but for almost every element
and all the applications of Part lll an executable example is presented that can be run
on the reader’'s computer. This gives the reader a chance to experiment and achieve
a deeper understanding. The examples are available via the Internet, see/Aection

on page273

Remarks

The original public domain implementation of the STL by Hewlett-Packard is a lit-
tle bit different to the C++ standard, since modifications and extensions have been
carried out since the integration of the STL. In the meantime also other implemen-
tations are available, e.g. from Silicon Graphics or RogueWave. It can be expected
that some time after the publication of the C++ standard in September 1998 all com-
piler producers will supply an STL implementation conforming to the standard, so
that differences in various implementations will play only a very marginal role.

In the text, programming issues such as variables, keywords, and program exam-
ples can be recognized ltyis type style . Explanations that interrupt the text
of a program are marked as indented commeénts  */ . Names of files are
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tip

printed initalics and screen displays kianted characters. A tag at the page margin
indicates an important hint or tip for programming.

Suggestions and criticism

are more than welcome. If you want to point out errors or make suggestions or
critical remarks, you can contact the author either through the publisher or directly
via e-mail {nfo@ubreymann.de  or breymann@informatik.hs-bremen.de ).

Acknowledgements
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Klewe (Fachhochschule Hamburg) and Andreas Scherer (RWTH Aachen), and | am
very grateful to them for their critical and thorough review of the manuscript and for
their helpful hints and tips. All weaknesses and errors rest solely with the author.



Contents

Foreword %
Preface Vi
Part | Introduction 1
1 The concept of the C++ Standard Template Library

1.1 Genericityof components. . . . . ... ... ... ........ 4

1.2 Abstract and implicitdatatypes . . . . . ... ... ... .. 4

1.3 Thefundamentalconcept. . . . . ... ... ... ... ... .. 5
1.3.1 Containers. . . . . .. .. i 5

1.32 lterators . . . . . . . oo 5

1.3.3 Algorithms. . . . . . ... .. ... . ... ... 6

134 Interplay . . . . . . . . . . . 6

1.4 Internalfunctioning. . . . . . .. ... ... .. ... .. ... 9

15 Complexity . . . . . . . e 14

151 Onotation . ... .. .. ... ... ... 15

152 Qnotation . . ... ... ... 18

1.6 Auxiliary classes and functions. . . . . ... ... ... ... .. 19
1.6.1 Pairs . . . . . . e 19

1.6.2 Comparisonoperators . . . . . . . . ... 20

1.6.3 Functionobjects. . . . ... ... ... ... . ..., 21

1.6.4 Functionadapters. . . ... ... .. ... .. ...... 24

1.7 Someconventions. . . . . . . . .. .. 27
1.7 Namespaces. . . . . . v v v v v e e 27

1.7.2 Headerfiles . . ... ... ... .. .. ... .. ..., 28

1.7.3 Allocators. . . . . ... . ... e 28

2 lIterators 29

2.1 lteratorproperties . . . . . . . .o e 30

211 States. . . . . .. 30

2.1.2 Standard iterator and traitsclasses . . . . . . .. .. .. 30

213 Distances. . . . . . .. 32

214 Categories. . . . . . . . i i e 33



Xii

CONTENTS
2.15 Reverseiterators . . . . . . ... .o 35
2.1.6 Constiterators. . . . . . . . . ... 36
217 Tagclasses . . .. ... ... ... e 36
2.2 Streamiterators . . . . . . ... 37
2.2.1 lIstreamiterator. . . . . ... ... o 37
2.2.2 Ostreamiterator. . . . .. ... ... .. .. .. ..... 40
3 Containers 45
3.1 Datatypeinterface. . . . .. ... ... ... . ... 45
3.2 Containermethods. . . . ... ... ... .. ... .. .. ..., 46
3.2.1 Reversible containets. . . . . .. ... Lo 46
3.3 SeqUENCES . . . . . i i e e e e 47
331 Mector. . . ... 49
332 List. ... .. 52
333 Deque . . ... . 56
3.3.4 showSequence . . . ... ... ... ... 56
3.4 lterator categories and containers . . . . . ... ... ... L. 58
3.4.1 Derivation of value and distance types . . . . . ... .. 61
3.4.2 Inheriting iterator properties . . . . .. ... .. ... .. 63
3.5 lterators for insertion into containers. . . . ... ... ... ... 63
4 Abstract data types 69
41 Stack . . . .. 69
4.2 QUEUE. . . . i it e e e e e 70
4.3 PriorityquUeUE. . . . . . . e 72
4.4 Sorted associative containers. . . . . .. ... oL 73
441 Set . ... e 74
442 Multiset. . . . ... 78
443 Map. . . e 78
444 Multimap. . . . . . . . .. e 81
Part Il Algorithms 83
5 Standard algorithms 85
5.1 Copyingalgorithms . . . .. .. ... ... ... .. ....... 85
5.2 Algorithms with predicates . . . . . .. .. ... ... ...... 86
5.2.1 Algorithms with binary predicates. . . . . . .. ... .. 87
5.3 Nonmutating sequence operations. . . . . . ... ... ... .. 87
531 foreach. ... .. ... ... ... ... ... . ..., 87
5.3.2 findandfind_if. . . ... ... ... .. .......... 89
533 findend............ ... .. ... . ..., 90
534 find first of . ... ... ... . ... ... ... ... 92
535 adjacent find . ... ... ... ... ... . .. 93
53.6 countandcount if . . ... ... ... oL, 94

537 mismatch. . . .. .. ... ... . .. 95



5.4

55

5.6

5.7

5.8
59
5.10
511

CONTENTS xiii

538 equal.......... .. .. ... 98
539 search . .. ... ... ... 99
5.3.10 search_ n. . . ... .. . . . ... e 101
Mutating sequence operations.. . . . . . . ... ... ... ... 101
541 ota. ... . 101
5.4.2 copyandcopy backward . ... ............. 102
543 copy if. ... . . . ... e 104
5.4.4 swap, iter_swap,and swap _ranges. . . . . .. ... .. 105
545 transform. . . . .. ... 107
546 replaceandvariants. . . ... ... ... ... ...... 109
547 fillandfilLn . ... ... ... . ... . ... . . . ... 111
5.4.8 generateandgenerate.n. . .. ... .. .. ....... 112
549 removeandvariants . . ... ... ... 113
5410 unique . . . ... 115
5411 reverse. . . . . . . e e 116
5412 rotate. . . . ... 117
5.4.13 random_shuffle . . . . . ... ... ..o 0 oL 119
5.4.14 partition. . . . . . . ... 121
Sorting, merging, and related operations . . . . . ... ... .. 122
551 sort. ... ... 122
552 nthelement.............. ... ....... 126
553 Binarysearch . . .. ... ... ... ... . ...... 127
554 Merging. . . . . . .. e e 130
Set operations on sorted structures . . . . ... ... ... ... 134
56.1 includes . .. ... ... .. ... 134
56.2 setunion. . ... ... ... ... .. 135
5.6.3 setintersection. .. ... ... ... ... . ...... 136
5.6.4 setdifference. . ... ... .. ... .. . . 137
5.6.5 set symmetric_difference . . . . ... ... ... ... 138
5.6.6 Conditions and limitations . . . . . .. ... ... .... 139
Heap algorithms . . . . . . . . . .. ... . . . 141
57.1 pop_heap . . ... ... ... 143
572 push_heap. . ... ... ... ... .. ... ... 145
573 make heap . ... ... ... ... ... ... 147
574 sort_heap . .. ... ... . . .. ... 148
Minimum and maximum. . . . . .. ... 150
Lexicographical comparison . . . . . . . ... ... ... ... 151
Permutations. . . . . . . . ... L 152
Numeric algorithms . . . . . . . . . . ... .. ... .. ... .. 153
5.11.1 accumulate. . . . . . ... 153
5.11.2 inner_product . . . . . .. ... e 154
5.11.3 partial_sum . . .. ... ... 156

5.11.4 adjacent_difference. . . . . . .. ... ... L. 157



Xiv CONTENTS

Part Il Beyond the STL:
components and applications

6 Set operations on associative containers

6.1 Subsetrelation. . .. ... ... ... ... ...,
6.2 Union . .. ... ... ... e
6.3 Intersection. . .. ... .. ... .. ... .. ...,
6.4 Difference. . . . . .. ... .
6.5 Symmetricdifference . . . ... ... ... ... ...
6.6 Example. . . . . ... ...

7 Fast associative containers

7.1 Fundamentals . . ... ....... . ... .. ...,
7.1.1 Collisionhandling. . . ... ... .......
7.2 Map. . . .o e

7.3 Set. . .
7.4 Overloaded operatorsforsets . . . ... ... ....
741 Union. . . ...
7.4.2 Intersection. . ... ... ... ... ... ..
7.4.3 Difference . . .. ... ... . .o ...
7.4.4 Symmetric difference. . . . .. ... ...
745 Example . .. ... ... oL

8 Various applications

8.1 Cross-reference . . . . .. ... ... . .. ... ...
8.2 Permutedindex . ... ... .. ... ... . .....
83 Thesaurus . . ... .. ... .. . .. ... ...

9 Vectors and matrices

9.1 Checkedvectors. . ... ... ... ... . ......
9.2 Matrices as nested containers . . . . ... .. .. ..
9.2.1 Two-dimensionalmatrices. . . .. .. ... ..
9.2.2 Three-dimensional matrix . . ... .. ... ..
9.2.3 Generalization. . . . ... ...........
9.3 Matrices for different memory models. . . . . ... ..
931 Cmemorylayout . . ... ... ........
9.3.2 FORTRAN memorylayout. . ... .. ... ..
9.3.3 Memory layout for symmetric matrices . . . . .
9.4 Sparsematrices . . . .. .. ... e
9.4.1 Index operator and assignment . . . . ... ..
9.4.2 Hash function forindex paits. . . . .. ... ..
9.4.3 Class MatrixElement . . . .. ... ......
9.4.4 ClasssparseMatrix . . . ... ... ......
9.4.5 Runtimemeasurements. . ... ........



10

11

CONTENTS XV

External sorting 223
10.1 External sortingbymerging. . . . . . . .. ... ... ... .. 223
10.2 External sorting with acceleratar. . . . . .. ... ... ..... 230
Graphs 235
11.1 ClassGraph . . . . . . . . . . e 238
11.1.1 Insertion of verticesandedges . . . ... ... ... .. 240
11.1.2 Analysisofagraph. . . ... ... ... ... ...... 241
11.1.3 Inputand outputtools. . . . . . ... ... ... ... .. 245
11.2 Dynamic priority queue . . . . . . . . .o 247
11.2.1 Datastructure.. . . . . . . . .. .. . 248
11.2.2 Class dynamic_priority queue. . . . . .. ... .. ... 248
11.3 Graphalgorithms, . . . . . . . ... .. ... .. ... . .. ... 254
11.3.1 Shortestpaths. . . . . . ... ... 256
11.3.2 Topological sortingofagraph. . . . .. ... ... ... 260
Appendix 267
Al Auxiliary programs. . . . . ... 267
A.1.1 Reading the thesaurus file roget.dat. . . . . .. ... .. 267
A.1.2 Readingagraphfile. . . .. ... .. ........... 268
A.1.3 Creation of vertices with random coordinates . . . . . . 269
A.1.4 Connecting neighboring vertices. . . . . . ... ... .. 270
A.1l5 CreatingaAlpXfile . . .. ... ... ... ... ... 271
A.2 Sourcesandcomments. . . .. .. ... ... 273
A.3 Solutionsto selected exercises. . . . . . ... .. ... ... .. 273
A.4 Overview ofthe samplefiles . . . . ... ... ... ... .... 281
A.4.1 Filesintheinclude directory . . . . . ... ... ... .. 281
A.4.2 Files for the introductory examples . . . . ... ... .. 281
A.4.3 Files for the standard algorithms. . . . . ... ... ... 281
A.4.4 Files for applications and extensions . . . . . ... ... 282
References 285

Index 287






Part |
Introduction






The concept of the
C++ Standard
Template Library

Summary:There are several libraries for containers and algorithms in C++. These
libraries are not standardized and are not interchangeable. In the course of the
now finished standardization of the C++ programming language, a template-based
library for containers and optimized algorithms has been incorporated into the
standard. This chapter explains the concept of this library and describes it with
the aid of some examples.

The big advantage of templates is plain to see. Evaluation of templates is carried
out at compile time, there are no run time losses — for example, through polymorph

function access in case genericity is realized with inheritance. The advantage of
standardization is of even greater value. Programs using a standardized library are
more portable since all compiler producers will be oriented towards the standard.

Furthermore, they are easier to maintain since the corresponding know-how is much
more widespread than knowledge of any special library.

The emphasis is oalgorithmswhich cooperate witltontainersand iterators
(Latin iterare = repeat). Through the template mechanism of C++, containers are
suited for objects of the most varied classes. An iterator is an object which can be
moved on a container like a pointer, to refer either to one or another object. Algo-
rithms work with containers by accessing the corresponding iterators. The concepts
will be presented in more detail later.

ReferencesOwing to its very nature, this book is based on well-known algo-
rithms of which several — those used in the examples — are described in detail. This
book cannot, however, provide a detailed presentation of all the algorithms used in
the STL. For example, readers who want to know more about red-black trees or
quicksort should refer to other books about algorithms. The authors of the STL
refer to which is a very thorough book and well worth read-
ing. An introduction to the STL is provided by ppublished
while | was working on the first edition of this booki describes the
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1.1

C++ standard library including the STL part, but without the applications and the
extensions presented in this book.

Genericity of components

An interesting approach is not to emphasize inheritance and polymorphism, but
to provide containers and algorithms for all possible (including user-defined) data
types, provided that they satisfy a few preconditions. C++ templates constitute the
basis for this. Thus, the emphasis is not so much on object orientation but on generic
programming. This has the very important advantage that the number of different
container and algorithm types needed is drastically reduced — with concomitant type
security.

Let us illustrate this with a brief example. Let us assume that we want to find an
element of thent data type in a container of thector type. For this, we need
afind()  algorithm which searches the container. If we hawdifferent containers
(list, set, ...), we need a separate algorithm for each container, which results in
find()  algorithms. We may want to find not only @&t object, but an object of
an arbitrary data type out of possible data types. This would raise the number of
find()  algorithms ton - m. This observation will apply té& different algorithms,
so that we have to write a total &f- n - m algorithms.

The use of templates allows you to reduce the numbéo 1. STL algorithms,
however, do not work directly with containers but with interface objects, that is,
iterators which access containers. lIterators are pointer-like objects which will be
explained in detail later. This reduces the necessary totahtd: instead of - k, a
considerable saving.

An additional advantage is type security, since templates are already resolved at
compile time.

1.2 Abstract and implicit data types

Abstract data types encapsulate data and functions that work with this data. The data
is not visible to the user of an abstract data type, and access to data is exclusively
carried out by functions, also called methods. Thus, the abstract data type is specified
by the methods, not by the data. In C++, abstract data types are represented by
classes which present a tiny flaw: the data that represents the state of an object of this
abstract data type is visible (though not accessible) iptivete  part of the class
declaration for each program that takes cognizance of this clagmwiade . From

the standpoint of object orientation, ‘hiding’ the private data in an implementation
file would be more elegant.

Implicit data types can on the one hand be abstract data types themselves, on the
other hand they are used to implement abstract data types. In the latter case they
are not visible from the outside, thus the name ‘implicit.” For example: an abstract
data typestack allows depositing and removing of elements only from the ‘top.” A
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stack can, for instance, use a singly-linked list as implicit data type, though a vector
would be possible as well. Users of the stack would not be able to tell the difference.

Implicit data types are not important in the sense of an object-oriented analysis
which puts the emphasis on the interfaces (methods) of an abstract data type. They
are, however, very important for design and implementation because they often de-
termine the run time behavior. Frequently, a non-functional requirement, such as
compliance with a given response time, can be fulfilled only through a clever choice
of implicit data types and algorithms. A simple example is the access to a number
of sorted addresses: access via a singly-linked list would be very slow compared to
access via a binary tree.

The STL uses the distinction between abstract and implicit data types by allow-
ing an additional choice between different implicit data types for the implementation
of some abstract data types.

The fundamental concept

The most important elements of the STL are outlined before their interplay is
discussed.

Containers

The STL provides different kinds of containers which are all formulated as template
classes. Containers are objects which are used to manage other objects, where it is
left to the user to decide whether the objects are deposited by value or by reference.
‘By value’ means that each element in the container is an object of a copyable type
(value semantics). ‘By reference’ means that the elements in the container are point-
ers to objects of possibly heterogeneous type. In C++, the different types must be
derived from a base class and the pointers must be of the ‘pointer to base class’ type.
A means of making different algorithms work with different containers is to
choose the sameamegqwhich are evaluated at compile time) for similar operations.
The methodsize() , for example, returns the number of elements in a container,
no matter whether it is ofector , list , or map type. Other examples are the
methodsbegin() andend() which are used to determine the position of the first
element and the positicafter the last element. These positions are always defined
in a C++ array. An empty container is characterized by identical valulesgir()
andend() .

Iterators

Iterators work like pointers. Depending on the application, they can be common
pointers or objects with pointer-like properties. Iterators are used to access container
elements. They can move from one element to the other, with the kind of movement
being hidden to the outside (control abstraction). In a vector, for example;+the
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operation means a simple switch to the next memory position, whereas the same op-
eration in a binary search tree is associated with a traversal of the tree. The different
iterators will be described in detail later.

1.3.3 Algorithms

1.3.4

The template algorithms work with iterators that access containers. Since not only
user-defined data types, but also the data types already existing in C++, sutch as

char , and so on are supported, the algorithms have been designed in such a way that
they can also work with normal pointers (see the example in the following section).

Interplay

Containers make iterators available, algorithms use them:
Containers—= lterators<=- Algorithms

This leads to a separation which allows an exceptionally clear design. In the
following example, variations of one program will be used to show that algorithms
function just as well with C arrays as with template classes of the STL.

In this example, aint value to be entered in a dialog is to be found in an array,
by using &find()  function which is also present as an STL algorithm. In parallel,
find() is formulated in different ways in order to visualize the processes. The
required formulation is approached step by step by presenting a vanaitioout
usage of the STL. The container is a simple C array. To show that a pointer works as
an iterator, the type nameratorType is introduced withtypedef

/I kl/a3.4/main.cpp

/I variation 1, without using the STL

#include<iostream> // see Sectior.7.2for header conventions
using namespace std;

/I new type naméteratorType for pointer toconst int
/I (we don't want to modify the values here)
typedef const int* IteratorType;

/I prototype of the algorithm
IteratorType find(IteratorType begin, IteratorType end,
const int& Value);

int main() {
const int Count = 100;
int aContainer[Count]; 1 define container
IteratorType begin = aContainer; 1 pointer to the beginning

/I position after the last element
IteratorType end = aContainer + Count;
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/I fill container with even numbers
for(int i = 0; i < Count; ++i)
aContainer[i] = 2%;

int Number = 0;
while(Number != -1) {
cout << " enter required number (-1 = end):";
cin >> Number;
if(Number 1= -1) { 1 continue?
IteratorType position = find(begin, end, Number);

if (position !'= end)
cout << "found at position "
<< (position - begin) << endl;
else
cout << Number << " not found!" << endl;

}

/I implementation
IteratorType find(IteratorType begin, IteratorType end,
const int& Value) {

while(begin = end 1 pointer comparison
&& *begin = Value) // dereferencing and object comparison
++begin; /I next position

return begin;

It can be seen that thiind()  algorithm itself does not need to know any-
thing about containers. It only uses pointers (iterators) which need to have very few

capabilities:

e The++ operator is used to proceed to the next position.

e The* operator is used for dereferencing. Applied to a pointer (iterator), it returns

a reference to the underlying object.

e The pointers must allow comparison by means ofith@perator.

The objects in the container are compared by means oftheperator. In the

next step, we cancel the implementation of fimel()
prototype with a template:

/I variation 2: algorithm as template (sk®a3.4/maintl.cpp
template<class Iteratortype, class T>
Iteratortype find(lteratortype begin, Iteratortype end,
const T& Value) {
while(begin = end 1 iterator comparison

function and replace the
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&& *begin != Value) // dereferencing and object comparison
++begin; 1! next position
return begin;

}

The rest of the program remainmchangedThe placeholdetteratorType
for the iterator’'s data type may have an arbitrary name. In the third step, we use a
container of the STL. The iteratobggin andend are replaced with the methods of
thevector<T> class which return a corresponding iterator.

/I variation 3 : a container as STL template (&&éa3.4/maint2.cpp
#include<iostream>

#include<vector> // STL

using namespace std;

/I new type name lteratorType for reading purposes, maybe (or
/I maybe not!) equal to ‘pointer toonst int ’

/I (depends on implementation)

typedef vector<int>::const_iterator IteratorType;

/I algorithm as template

template<class Iteratortype, class T>

Iteratortype find(lteratortype begin, Iteratortype end,
const T& Value) {

while(begin != end I iterator comparison
&& *begin != Value) 1 object comparison
++begin; /I next position
return begin;
}
int main() {
const int Count = 100;
vector<int> aContainer(Count); 1 define container
for(int i = 0; i < Count, ++i) // fill container with
aContainer[i] = 2%; Il even numbers

int Number = 0;
while(Number != -1) {
cout << " enter required number (-1 = end):";
cin >> Number;
if(Number 1= -1) {
/I use global find() defined above
IteratorType position =
.:find(aContainer.begin(), // use of container methods:
aContainer.end(), Number);

if (position != aContainer.end())
cout << "found at position "
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<< (position - aContainer.begin()) << endl;
else cout << Number << " not found!" << endl;

}

This shows how the STL container cooperates with our algorithm and how arith-
metic with iterators is possible (formation of a difference). In the last step we use
thefind()  algorithm contained in the STL and replace the whole template with an
additional#include instruction:

/I variation 4: STL algorithmK1/a3.4/maintstl.cpp

#include<algorithm>

/I ... the rest as variation 3, but withdiind()  template. Also the caltfind()
/I has to be replaced wiind()  (i.e. std::find() ).

In addition to this, it is not necessary to define an iterator type wiibdef
because every container of the STL supplies a corresponding type. So instead of
IteratorType  , YyOUu may writevector<int>::iterator in the above program.
An interesting fact is that the algorithm can cooperate \aitly class of iterators
that provides the operatiotrs for comparison* for dereferencing, ane+ for pro-
ceeding to the next element. This is one reason for the power of the concept and for
the fact that each algorithm has to be present in @mgform, which minimizes
management problems and avoids inconsistencies. Thus, algorithms and containers
of the STL come quite close to the ideal concept that one can simply plug together
various software components which will then function with each other.

The use of the large number of algorithms and containers of the STL makes
programs not only shorter, but also more reliable, because programming errors are
prevented. This helps to increase productivity in software development.

Internal functioning

How does the STL function internally? To show this in detail, the example from
the previous section will be used, not with a container of the STL, but with a user-
defined class which behaves exactly as the classes of the STL. To ensure that an
iterator of this class cannot simply be identified with a pointer, the example must be
made slightly more complex: instead of the vector, we take a singly-linked list. The
class will be calledlist  (for simple list).

Thus, we have no random access to the elements via the index operator. There-
fore, the container is filled by means of the metlpodh_front() . Furthermore,
to keep the class as simple as possible, no run time optimization is considered. This
class for a simple list is not complete; it provides only what is needed in the example.

The predefinedind()  algorithm is used to show that the user-defined class
really behaves exactly like a class of the STL.

The list consists of list elements whose type is defined insidésthe class as a
nested public classffuct ). In a structure, direct access to internal data is possible,
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but this is not a problem here because the data is located in the private section of the
slist class. Each list element carries the pertinent data, for example a number,

together with a pointer to the next list elemefitstElement is the pointer to
the first list element. The clagtist provides an iterator typgerator ~ which

is located in thepublic  section since it is to be publicly accessible. It is also used
in the following main() program. An iterator object stores the current container
position in thecurrent  attribute. The methods satisfy the requirements for iterators

formulated on pag@é.

/I file k1l/a4/slist.ht list template for singly-linked lists

/I'T is a placeholder for the data type of a list element

/I incomplete! (only functions needed for the example are implemented)
#ifndef SIMPLELIST_H

#define SIMPLELIST_H

namespace br_stl {

#include<cassert>
#include<iterator>

template<class T>
class slist {
public:

/* Some types of the class get public names. Then it is possible to use them outside

the class without knowing the implementation.
*/
typedef T value_type;
typedef ptrdiff_t difference_type;
typedef T* pointer;
typedef T& reference;
/I etc. see text

slist() : firstElement(0), Count(0) {}

[* copy constructor, destructor and assignment operator are omitted! The implemen-
tation ofpush_front() creates a new list element and inserts it at the beginning

of the list:
*/
void push_front(const T& Datum) { // insert at beginning
firstElement = new ListElement(Datum, firstElement);
++Count;
}
private:

struct ListElement {
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T Data;
ListElement *Next;
ListElement(const T& Datum, ListElement* p)
. Data(Datum), Next(p) {}
I8

ListElement *firstElement;
size_t Count;

public:
class iterator {

public:
typedef std::forward_iterator_tag iterator_category;
typedef T value_type;
typedef T* pointer;
typedef T& reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;

iterator(ListElement* Init = 0)
. current(Init){}

T& operator*() { I dereferencing
return current->Data;

}

const T& operator*() const { // dereferencing
return current->Data;

}

iterator& operator++() { I prefix
if(current) // not yet arrived at the end?

current = current->Next;

return *this;

}

iterator operator++(int) {  // postfix
iterator temp = *this;
++*this;
return temp;

}

bool operator==(const iterator& x) const {
return current == x.current;

}

bool operator!=(const iterator& x) const {
return current != x.current;
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private:
ListElement* current; // pointer to current element
Y. /Il iterator

[* As can be seen above, in the postfix variation of theoperator, the copy con-
structor is needed for initialization and returntefp . For this reason, the prefix
variation should be preferred where possible. Some methods sfishe class
use thdterator class:

*
iterator begin() const { return iterator(firstElement);}
iterator end() const { return iterator();}

h

} /I namespace br_stl

#endif //  SIMPLELIST_H

Sometimes it is advantageous to write

/I internal type definition may be unknown
slist<myDataType>::difference_type Dist;

in a program instead of

/I predefined type
long Dist;

This is especially useful if there are possible later changes in the internal type struc-
ture of classslist . Using the public type names avoids changing an application
program which uses the list. More advantages of exporting types will be described
in Section2.1

At this point we only need the subtraction operator to be able to calculate differ-
ences between list iterators.

/I (insert inslist.habove)
template<class Iterator>
int operator-(Iterator second, Iterator first) {
int count = O;
/* The difference between the iterators is determined by incremefiting  until the
second iterator is reached. Thus, the condition isfitett  liesnot afterthe second
iterator. In other wordssecond must be able to reach the iterator by means of the

++ operator.
*

while(first != second
&& first = lterator()) {

++first;

++count;
}
/I In case of inequality, second is not reachable by first
assert(first == second);

return count;
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The loop condition involvingterator() (together with the assertion) ensures
that the loop does not run endlessly and that the program aborts when the iterator
cannot be reached from the iterafiest by means of the+ operation.

The followingmain() program strongly resembles the one on pagad uses
the user-defined class in the same way as a class of the STL. Try using this example
to get a clear idea of the functioning details, and you won't have any great problem
understanding the STL.

/I kl/ad/mainstl2.cpp

#include<algorithm> 1 containsfind()
#include<iostream>
#include"slist.h" I user-defined list class (see above)
int main() {

const int count = 100;

br_stl::slist<int> aContainer; I define the container

/* Change of order because the container is filled from the front! This example differs
from those in Sectiori.3.4 because elements are inserted, i.e., the container is
expanded as needed.

*/

for(int i = count; i >= 0; i) { // fill the container with
aContainer.push_front(2*i); I even numbers

}

int Number = 0;

while(Number = -1) {
std::cout << " enter required number (-1 = end):";
std::cin >> Number;

if(Number = -1) {
/I use of container methods:
br_stl::slist<int>::iterator Position =
std::find(aContainer.begin(),
aContainer.end(), Number);

if(Position !'= aContainer.end())
std::cout << "found at position "
<< (Position - aContainer.begin())
<< std::endl;
else
std::cout << Number << " not found!"
<< std::endl;
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1.5

Exercise

1.1 Complete theslist class using the following:

e A methoditerator erase(iterator p) that removes the element pointed
to by the iteratop from the list. The returned iterator is to point to the element
following p provided it exists. Otherwisend() is to be returned.

e A methodvoid clear() that deletes the whole list.
e A methodbool empty() that shows whether the list is empty.
o A methodsize_t size() that returns the number of elements.

e A copy constructor and an assignment operator. The latter can utilize the first: Cre-
ate a temporary copy of the slist and then exchange the management information
(attributes).

e A destructor.

Complexity

The STL has been developed with the aim of achieving high efficiency. Run time
costs are specified for each algorithm depending on the size and kind of the container
to be processed. The only assumption made is that user-defined iterators can move
from one element of a container to the next element in constant time.

This section gives a brief introduction to the concept of complexity as a measure
for computing and memory requirements.

An algorithm should obviously be correct —this is, however, not the only require-
ment. Computer resources are limited. Thus, another requirement is that algorithms
must be executed on a real machine in a finite number of cycles. The main resources
are computer memory and available computing time.

Complexityis the term that describes the behavior of an algorithm with regard
to memory and time consumption. The efficiency of an algorithm in the form of a
running program depends on:

e the hardware,

¢ the type and speed of required operations,
e the programming language, and

¢ the algorithm itself.

The concept of complexity exclusively concerns the algorithm. Machine prop-
erties and programming language details are ignored, since they modify the time
needed for an algorithm by a constant factor if we assume a von Neumann architec-
ture. There are two ways of analyzing the efficiency of an algorithm:
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1. Measurements

e Carry out measurements of the run time behavior for different sets of input
data.

e The best, worst, and average cases are of interest. The cases depend on the
properties of the input data, the system environment and the algorithm, so that
corresponding knowledge must be available.

2. Analysis of the algorithm

e The algorithm is analyzed. Machine, operating system and compiler are ig-
nored.

e The frequency of executed instructions is an index of the speed. This frequency
can be directly derived from the algorithm.

e Again, the best, worst, and average cases are of interest.

Only the second way will be described. Wherever the term ‘complexity’ ap-
pears, it is intended to medime complexityExamples can be found in Tahlel
Since they are independent of any special programming language, they are written
in pseudo-code notation. The symboktands for ‘proportional to.’

The loop variables andj are of no importance in this context. The frequencies
with which the instructions: = x + y andn = n/2 in Table1.1are executed differ
by orders of magnitudavhich are not dependent on any machine or programming
language. Only these orders of magnitude are of interest here.

O notation

The ‘O notation’ describes an order of magnitude. In the examples of Tahlthe
orders of magnitudé®(1), O(n), O(n?), andO(log n) occur. Apart from a constant
factor, the ‘O notation’ describes the maximum execution time for large values of
thus indicating amipper boundWhat ‘large’ means depends on the individual case,
as will be shown in one of the following examples. The constant factor comprises all
environmental properties in which the algorithm runs, like CPU speed, compiler etc.
Ignoring the constant factor allows for comparing algorithms.

Definition Let f(n) be the execution time of an algorithm. This algorithm is of
(time) complexityO(g(n)) if and only if two positive constants andn, exist so
that f(n) < cg(n) applies to allh > ng.

Example

Let us assume an algorithm for vectors whose execution fitng depends on the
lengthn of the vector. Let us further assume that

f(n) =n?+5n+ 100
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Algorithm Frequency | (Time) complexity

r=x+y 1 constant

for i=1ton
dox=x+y xn linear
od

for i=1ton
do
for j=1ton
doz=z+y xn quadratic
od
od

n =natural number
k=0
whilen > 0
do x logn logarithmic
n=n/2
E=k+1
od

Table 1.1: Algorithms and frequency.

applies. The execution time could now be estimated with a simpler fungtion=
1.1n2. If we now comparef (n) with g(n), we see thag(n) > f(n) for all n > 66.
Obviously, we could have chosen different values d@ndn, for examplec =
1.01 andng = 519. Therefore, complexity of (n) is O(n?). The complexity says
nothingaboutactualcomputing time.

Example

Let A be an algorithm of execution timgy(n) = 10*n and B be an algorithm of
execution timefz(n) = n2. It can easily be seen that algorithsis faster for all
valuesn > 10%, whereasB is faster for alln < 10*. Algorithm A is therefore to
be recommended for large valuesrgfwhere in this case, the word ‘large’ means
n > 10%

Therefore, algorithms of low complexity should normally be preferred. Excep-
tions are possible, depending on the value of the constamdn. In order to select
an appropriate algorithm for a given problem, the sizef the input data set must
be known.

Some rules

1. O(constx* f)=0(f) Example:O(2n)= O(n)
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Examples:
2. O(f+g)=0(f)*0(g) O((1mn) *n) = O(17n) * O(n)
= O(n) * O(n) = O(n?)
O(f/g9) = O(f) *O(3) O((3n%)/n) = O(3n?) = O(n?)

3. O(f + g) = dominating function
of O(f)andO(g)  O(n® +n?) = O(n%)

Examples

Linear search
Let us assume an unordered sequence of names together with addresses and phone
numbers. The task is to find the phone number for a given name.

e The number to be found can lie at the beginning, the end, or somewhere in the
middle.

e On average, we must comparg2 names when the total number of names.is
e The time complexity i$)(n/2) = O(n).

Binary search
Now, we look for a name in a normal, thus sorted, phone book.

e We look in the middle of the book and find a name. If this is the name we are
looking for, we have finished. If not, we continue our search in the left or right half
of the book, depending on whether the name we are looking for is alphabetically
located before or after the name we just saw.

e We repeat the previous step with the chosen half of the book until we have
found the name we are looking for, or we find out that it does not occur in the
book at all. With each of these steps, the number of possible names is halved:
n/2,n/4,n/8,...,4,2 1.

e There exists a numbérso thatn > 21 andn < 2F. We do not need more than
k comparisons.

e The algorithm is of complexit¥) (k) = O(log, n) = O(logn).

Travelling salesman problem (TSP)

A travelling salesman wants to visittowns. He wants to save time and money and

looks for the shortest route that connects all towns. One method to find the optimum

solution is an analysis of all possible routes. What is the complexity of this method?
As his first town, he can choose one outrotowns. From this point, he can

choose between — 1 towns to drive to next. When he has reached the next town, he

can choose between— 2 towns, and so on. When he has visited- 1 towns, only

one choice remains: town numberThe total number of routes to connectowns

isn-(n—1)-(n—=2)-...-2-1=n!



18

THE CONCEPT OF THE C++ STANDARD TEMPLATE LIBRARY

If 20 towns are to be visited, there are 20! = 2,432,902,008,176,640,000 different
routes to compare. The complexity of the algorithn®ig:!).

This well-known problem is an example of a class of similar problems which
are called NP complete. NP is an abbreviation for ‘non-deterministic polyno-
mial.” This means that a non-deterministic algorithm (which ‘magically’ knows
which is to be the next step) can solve the problem in polynomial tithg)).

(A more extensive and more serious treatment of the subject can be found in
J) In the end, it does not matter at @il which order

the next town to be visited is chosen, but if ydoknow the right order, the solution

is found very quickly.

However, predefining an order changes the algorithm into a deterministic one,
and because magic does not work, we usually have no choice other than predefining
a schematic order — and there we are! Only occasionally does experience help with
specially structured problems. As far as the salesman is concerned, this means that
there is no deterministic algorithm with a polynomial time functici(c = constant)
that dominates:! For each possible constanthere exists am, so that for alln
greater thamg, n! is greater tham°.

The class of NP problems is also called ‘intractable,’ because for a large number
of input variables, solution attempts do not arrive at a result in a reasonable time
measured on a human timescale. On the other hand, existing solutions of NP prob-
lems can be verified ‘quickly,’ that is, in polynomial time.

A mathematical proof that the salesman problem and other related problems can
have no polynomial solution is still pending. There are some heuristic methods which
at least approach the optimum and are significantly faster@ah).

This class of problems has practical applications, for example:

e drilling hundreds or thousands of holes in a circuit board with a moving laser in a
minimum time,

¢ finding the cheapest path in a computer network,

o distributing goods in a region using a shipping agency.

1.5.2 () notation

The O notation defines anpperbound for an algorithm. Improvement of an algo-
rithm can reduce the bound. For example, sequential search in a sortedx@ble:
binary search in a sorted tabl@{log n). Is there also tower bound for a given al-
gorithm? Is it possible to show that the solution of a given problem requires a certain
minimum of effort?

If a problem necessitates leastO(n?) steps, there is no point in searching for
anO(n) solution.

The(2 notation describes lower bounds. For example, sequential search in a table
is of the ordef2(n), because each element must be looked at at least Q(leg;n)
is not possible. In this cas@(n) = O(n).
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Example

Multiplication of twon * n matrices:

upper bound:

O(n?) simple algorithm (three nested loops)

O(n*81) von Strassen 1969

O(n?376) Coppersmith and Winograd 1987
(quoted in )

lower bound:

Q(n?) at least two loops are needed, because

n? elements must be entered into the product matrix

1.6 Auxiliary classes and functions

1.6.1

This section briefly describes some tools which will be needed at a later stage.

Pairs

A pair in the sense of the STL is an encapsulation of two objects which belong
together and which can be of different types. Pairs are fundamental components
which will be used in later chapters. They are defined by means of a psiolict( )
template class, defined in headerility>

template <class T1, class T2>
struct pair {
T1 first;
T2 second,;
pair(){}; // see text
/I initialize first ~ with x andsecond withy:
pair(const T1& x, const T2& vy);
/I copy constructor:
template<class U, class V> pair(const pair<U, V> &p);

h

The default constructor causes the elements to be initiated with the default con-
structors of their type. In addition to the class definition, there are some comparison
operators:

template <class T1, class T2>
bool operator==(const pair<T1, T2>& X,
const pair<Tl, T2>& vy) {
return x.first == y.first && x.second == y.second;
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template <class T1, class T2>
bool operator<(const pair<T1, T2>& X,
const pair<Tl, T2>& y) {
return x.first < y.first
I (y.first < x.first)
&& x.second < y.second);

When the first objects are equal, the return value oktbheerator is determined
by the comparison of the second objects. However, in order to make only minimum
demands on the objects, the equality operatois not used in the second template.
It might be the case that equality of two pairs is not required in a program. Then, the
above templateperator==() is not applied, so that the classes andT2 only
have to provide the operator. The other comparison operators for pairs are

template <class T1, class T2>
bool operator!=(const pair<T1, T2>& X,
const pair<Tl, T2>& vy);
template <class T1, class T2>
bool operator> (const pair<Tl, T2>& X,
const pair<T1, T2>& vy);
template <class T1, class T2>
bool operator>=(const pair<Tl, T2>& X,
const pair<Tl, T2>& vy);
template <class T1, class T2>
bool operator<=(const pair<Tl, T2>& X,
const pair<T1, T2>& vy);

A function facilitates the generation of pairs:

template <class T1, class T2>

pair<Tl, T2> make_pair(const T1l& X, const T2& y) {
return pair<Tl, T2>(Xx, Y);

}

pair objects are needed from Sectiért. Lonward.

1.6.2 Comparison operators

In namespacstd::rel_ops , the STL provides comparison operators which make
it possible that in a class only the operatersand< must be defined and yet the
whole set of comparisons is available:

template <class T>
bool operator!l=(const T& X, const T& y) {
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return I(x == vy);
}

template <class T>
bool operator>(const T& x, const T& y) {
return y < x;

}

template <class T>
bool operator<=(const T& x, const T& y) {
return Iy < X);

}

template <class T>
bool operator>=(const T& x, const T& y) {
return I(x < y);

}

Strictly speaking, it would be possible to manage with only<tuperator if the
following definition is contained in the STL.:

/I not part of the STL!

template <class T>

bool operator==(const T& x, const T& y) {
return I(x < vy) && l(y < x);

}

This kind of check is sometimes used inside the STL. Strictly speaking, the term
‘equality’ is no longer appropriate; one should actually use the term ‘equivalence.’
When comparing integer numbers with th@perator, the two terms coincide; this
is, however, not generally the case, as the following example shows. In Webster’s
International Dictionary, accented letters are treated in the same way as the corre-
sponding simple vowels. Thus, ‘piéce de résistance’ stands between ‘piece by piece’
and ‘piece-meal.’ ‘piece’ and ‘piece’ are not equal, but equivalent with respect to
sorting. Another way of carrying out comparisons is shown in Sedtiéri

Function objects

In an expression, the call of a function is replaced with the result returned by the
function. The task of the function can be taken over by an object — a technique
frequently employed in the algorithms of the STL. For this purpose, the function
operator) is overloaded with the operator functioperator()()

Then an object can be called in the same way as a function. Algorithmic objects
of this kind are calledunction object®r functors

Functors are objects which behave like functions but have all the properties of
objects. They can be generated, passed as arguments, or have their state modified.
The change of state allows a flexible application which, with functions, would be
only possible via additional parameters.
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Comparisons

The STL provides a large number of template classes for comparisons. Objects of
this class appear later under the name of comparison object. T&lsleows the calls
of objects as function calls, that i8(x,y) is identical toX.operator()(x,y)

The comparison classes are binary functions, and therefore they inherit from the
binary_function class. The only purpose of this class is to provide uniform type
names for all classes inheriting from it:

template<class Argl, class Arg2, class Result>
struct binary_function {
typedef Argl first_argument_type;
typedef Arg2 second_argument_type;
typedef Result result_type;
2

For unary classes, a corresponding templatey_function is defined. The
word struct  saves thepublic  label. Everything can be public, because the class
has no data to be protected. This, for example, ietjoal_to template for equality:

template<class T>
struct equal_to : binary_function<T, T, bool> {
bool operator()(const T& X, const T& y) const {

return x ==y;
}
h
Object definition (Type T) | Call Return
equal_to<T> X; X(X, Y) X ==y
not_equal_to<T> X; XX, y) X =y
greater<T> X; X(X, Y) X >y
less<T> X; X(X, Y) X <y
greater_equal<T> X; XX, Y) X >=y
less_equal<T> X; X(x, y) X <=y

Table 1.2: Template classes for comparison (headenctional> ).

The aim of templates is to supply algorithms with a uniform interface. The tem-
plates rely on the corresponding operators of data fypdowever, a specialized
comparison class can be written for user-defined classes without having to change
the algorithm. The user-defined class does not even need to have the comparison op-
erators==, < and so on. This technique is used quite frequently; at this point, a short
example will demonstrate how it functions.

A normal C array ofnt numbers is sorted once by element size using the stan-
dard comparison objetdss<int>  and once by thabsolute valuef the elements,
where in the second case, a user-defined comparison ebpettteLess  is used.

To show the effect more clearly, a normal C array and a modest function template
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bubble_sort  are used instead of accessing the containers and algorithms of the
STL.

/I kl/a6/compare.cpp Demonstration of comparison objects

#include<functional> Il less<T>
#include<iostream>
#include<cstdlib> /I abs()

struct absoluteLess {
bool operator()(int x, int y) const {
return abs(x) < abs(y);
}
b
The following sorting routine no longer uses theperator in thef condition,
but the comparison object whoseerator()(...) is called. Please ignore the
bad performance, later we’'ll see the much fastet() (see pagé22).

template<class T, class CompareType>
void bubble_sort(T* array, int Count,
const CompareType& Compare) {

for(int i = 0; i < Count; ++i) {
for(int j = i+1; j < Count; ++j)
if (Compare(array[i], array[j])) { // functor call

/I exchange

const T temp = array]i];
array[i] = array[j];
array[j] = temp;

}

/I Auxiliary procedure for display
void Display(int *Array, int N) {
for(int i = 0; i < N; ++i) {

std::cout.width(7);
std::cout << Array[i];
}

std::cout << std::endl;

}

int main() {
int Table[] = {55, -7, 3, -9, 2, -9198, -937, 1, 473}
const int num = sizeof(Table)/sizeof(int);

/* The comparison objeatormalCompare is of the standard class typess ,
which has been made known wi#include<functional> .less compares
with the< operator..

*/
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1.6.4

/I Variation 1
std::less<int> normalCompare;
bubble_sort(Table, num, normalCompare);
std::cout << "sorted by size:" << std::endl;
Display(Table, num);

/Il 4735532 1-7-9-937-9198

/* Alternatively, you can do without explicit creation of an object when the construc-
tor is called in the argument list.

*/

/I Variation 2

bubble_sort(Table, num, std::less<int>());

/* The comparison object is of the user-defined tgpsoluteLess  which uses
not only the< operator, but also thabs() function, and which in principle can
be arbitrarily complex. It is a big advantage that thébble_sort  algorithm
and its interface do not have to be changed.

*/

std::cout << "sorted by absolute value:" << std:endl;
bubble_sort(Table, num, absoluteLess());
Display(Table, num);
/I -9198 -93747355-9-7321
} /I End of example

The user-defined design of special comparison functions shows the great flexi-
bility of the concept of function objects. In addition to the examples shown, appro-
priately written function objects can also carry data, if needed.

Arithmetic and logic operations

As in the previous section, the STL provides template classes for arithmetic and
logic operations (see Table3) which can be used like a function by means of the
overloadedperator() . (Note that ‘multiplies’ was called ‘times’ in earlier draft
versions of the C++ standard.) The advantage is again that these templates can be
overloaded with specializations without having to change the interfaces of the algo-
rithms involved.

Function adapters

Function adapters are nothing more than function objects which cooperate with other
function objects to adapt them to different requirements. This allows us to get by with
existing functors and avoid writing new ones.

notl

The functionnotl takes a functor as the parameter which represents a predicate
with one argument (thus the suffix 1) and returns a functor which converts the
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Object definition (Type T) | Call Return
plus<T> X; X(X, ) X +y
minus<T> X; X(X, ) X -y
multiplies<T> X; X%, Y) X *y
divides<T> X; X(X, ) xly
modulus<T> X; XX, y) X %y
negate<T> X; X(x) -X
logical_and<T> X; X(X, y) X && y
logical_or<T> X; X(X, y) x|y
logical_not<T> X; X(X, ) Ix

Table 1.3: Arithmetic and logic template classes (headenctional> ).

logical result of the predicate into its opposite. Let us assume that there exists a
predicateodd with the following definition (that by the way, can be replaced with
not1(bind2nd(modulus<int>(),2)) , See pageo):

struct odd : public unary_function<int, bool> {
bool operator () (int x) const {
return (x % 2) != 0;
}
h
Application ofnotl is shown by the following program fragment:
int i
cin >> i;
if(odd()(i))
cout << | << " is odd";
if(not1(odd())(i))
cout << i << " is even";

Instead of an object declared on purpose, first a temporary object obdgpis
generated whose operatr is called. In the seconifl instruction,notl generates
a functor whose operat@r is called with the argumenmt How does this work? The
STL provides a class out of whictotl generates an object:

template <class Predicate>
class unary_negate
. public unary_function<typename
Predicate::argument_type, bool> {
protected:
Predicate pred;
public:
explicit unary_negate(const Predicate& x) : pred(x) {}
bool operator()(const typename
Predicate::argument_type& x) const {
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return !pred(x);

}
2
The operatof) returns the negated predicate. The class inherits the type defi-

nition of argument_type  from unary_function . However, the compiler shall

be able to identify the parameter type aderator()() without analyzing the
Predicate -template. This is required by ) Thereforetypename is
used.

not2

This function works in a similar way, but it refers to predicates witb parameters.
This can be used to reverse the sorting order of variation 2 onage

/I Variation 2, reverse sorting order
bubble_sort(Table, num, std::not2(std::less<int>()));

Analogous tanotl , internally a classinary_negate  is used. The sorting or-
der byabsolute valu®n page24 can be reversed withot2 only if the class inherits
from binary_function for comparisons (see pagé):

struct absoluteLess
. public binary_function<int, int, bool> {
Il as above

h
bind1st, bind2nd

These functions transform binary function objects into unary function objects by
binding one of the two arguments to a value. They accept a function object with
two arguments and a value They return a unary function object whose first or
second argument is bound to the valueFor example, the known functdsss

(see Tablel.2) compares two values and returns true if the first value is less than
the second one. If the second value is fixed, for example to 1000, a unary function
object suffices which is generated by meanbinder2nd . Thefind()  algorithm
described on pagé has an overloaded variation described later (pa@ewhich
accepts one predicate.

std::find(v.begin(), v.end(),
std::bind2nd(std::less<int>(), 1000));

finds the first number in thiat vectorv which is less than 1000, and

std::find(v.begin(), v.end(),
std::bind1st(std::less<int>(), 1000));

finds the first number in thiat vectorv which is not less than 1000. The functors
returned by the functionbindlst<operation, value>() and bind2nd<op-
eration, value>() are of the typebinderlst<operation, value> and
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binder2nd <operation, value> . In an application such as the one above, the
types usually do not appear explicitly (class definition in heaflerctional> ).

ptr_fun

This overloaded function transforms a pointer to a function into a functor. As an
argument, it has a pointer to the function which can have one or two parameters.
The function returns a function object which can be called in the same way as the
function. The types of function objects defineckfanctional>  are

pointer_to_unary_function<parameterl, result>
and
pointer_to_binary_function<parameterl, parameter2, result>

Frequently (but not always), these types remain hidden in the application. A short
example shows its use. A pointer to a function is initialized with the sine function.
Subsequently, the sine of an angle is called both via the function pointer and via a
function object generated withtr_fun()

#include<functional>
#include<iostream>
#include<cmath>

double (*f)(double) = std::sin; 1 initialize pointer
int main() {
double alpha = 0.7854;
/I call as:
std::cout << f(alpha) I function
<< std::endl
<< std::ptr_fun(f)(alpha) // functor
<< std::endl;

1.7 Some conventions

1.7.1 Namespaces

In order to avoid any name clashes, nearly all sample classes in the book are in
namespacér_st
In files with samplenain() -programs, oftemsing namespace std; isused.
All other programs use qualified names likesitd::cout << std::endl; in-
stead ofcout << endl;
All algorithms and classes of the C++ standard library are in namespace
even if this is not specially mentioned.
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1.7.2

1.7.3

Header files

The standard calling conventions put all C-headers into the namesipacEor ex-
ample, the standard headertype> isinthe namespaead , whereasctype.h>
is in the global namespace.

The C standard library functions are accessed by omitting the ‘.h’ extension of
the file name and prefixing the old file name with a ‘c.’ For example:

#include<string> I C++ string class

#include<cstring>  // C string functions for C++, namespace std
#include<string.h> // C string functions, global namespace
#include<cctype> I ctype functions for C++
#include<ctype.h>  // ctype functions, global namespace

The sample programs available via the internet (see p@gecontain a special
include-directory which should be passed to the compiler with the -1 option. There-
fore header files of this directory are included using angle brackeisstead of
guotation marks . Some people prefer quotation marks. However, this means that
the compiler first tries to look up headers in the current directory. Telling the com-
piler with the -l option where the header files really are saves compilation time.

Allocators

Allocators provide memory for containers. There are system provided standard allo-
cators, but you can define your own special allocators which, for example, do some
garbage collection. Allocators are not treated in this book, because the emphasis lies
on data structures and algorithms and their complexity.
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Summary: Iterators are used by algorithms to move through containers. The sim-
plestiterators are common pointers as shown in Sedtidnt This chapter describes
different types of iterator and their properties in detail.

A preliminary remark: iterators closely cooperate with containers. A parallel presen-
tation of iterators and containers in a sequential text is however difficult and probably
not very clear, and for this reason the containers of the STL are described only in the
following chapter. In order to refer as far as possible only to previously explained
issues, certain aspects of iterators which can only be understood with a knowledge
of containers are temporarily left out. They will be considered at the end of Chapter
3.

Essential properties for all iterators are the capabilities mentioned on7pafge
advancing {+), of dereferencing*(), and of comparisoni£ or ==). If the itera-
tor is not a common pointer, but an object of an iterator class, these properties are
implemented by means of the corresponding operator functions:

/I scheme of a simple iterator:
template<class T>
class lIterator {
public:
/I constructors, destructor ....

bool operator==(const Iterator<T>&) const;
bool operator!=(const Iterator<T>&) const;
Iterator<T>& operator++(); I prefix
Iterator<T> operator++(int); 1l postfix
T& operator*() const;
T* operator->() const;

private:
/I association with the container ...

h

The operator> allows you to use an iterator in the same way as a pointer. For
a vector container, one could obviously imagine that the iterator should also have a
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2.1
2.1.1

2.1.2

methodoperator--() . Different reasonable and possible capabilities of iterators
are discussed further below.

The corresponding implementations of the lines beginning with the comment
symbol (/ ) depend on the container with which the iterator is to work. The dif-
ference with a normal pointer has already been seen in Setctiamhich shows an
iterator working with a list. The iterator remembers the element of the list to which
it points in a private pointer variablaurrent  (see page.2). Each element of the
list containsData and has a variable that points to the following element.

I[terator properties
States

Iterators are a generalization of pointers. They allow you to work with different
containers in the same way. An iterator can assume several states.

e An iterator can be generated even without being associated with a container. The
association with the container is then made at a later stage. Such an iterator cannot
be dereferenced. A comparable C++ pointer could, for example, have the value 0.

e Aniterator can be associated with a container during generation or at a later stage.

Typically — but not compulsorily — after initialization it points to the beginning of
the container. The methdekgin() of a container supplies the starting position.
If the container is not empty, the iterator can in this case be dereferenced. Thus,
it can be used to access an element of the container. With the exception of the
end() position (see next point) the iterator can be dereferenced for all values that
can be reached with the- operation.

e In C++ the value of a pointer which points to a position diregibstthe last
element of a C array is always defined. Similarly, the methatf) of a container
always returns an iterator with exactly this meaning, even if the container is not
an array but, for example, a list. This allows you to deal with iterator objects
and pointers to C++ basic data types in the same way. A comparison of a current
iterator with this past-the-end value signals whether the end of a container has
been reached. Obviously, an iterator which points to the position past the end of a
container cannot be dereferenced.

Standard iterator and traits classes

One essential advantage of templates is the evaluation of type names at compile
time. To use type names that belong to iterators in a program without having to look
into the internals of the iterator, it is specified that each iterator of the C++ Standard
Library makes certain type names publicly available. The same principle also applies
to containers. Thelist  class on pagé2 provides such type names. Traits classes
are a tool for exporting the type names of an iterator class:



template<class Iterator>

struct iterator_traits {

typedef typename

typedef typename
typedef typename
typedef typename
typedef typename

h

Iterator

Iterator
Iterator
Iterator
Iterator
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:.difference_type
difference_type;
value_type value_type;
:pointer pointer;
reference reference;
siterator_category
iterator_category;

The question arises as to why this task cannot be fulfilled directly by an iter-
ator class itself. It can — in most cases. The algorithms of the C++ Standard Li-
brary should, however, be able to work not only on STL containers that provide type
names, but also on simple C arrays. Iterators working on such arrays are, however,
simply pointers, possibly to basic data types suchas An iterator of typeint*
can certainly not provide any type names. To ensure that a generic algorithm can
nevertheless use the usual type names, the above template is specialized for point-

ers:

/I partial specialization (for pointers)

template<class T>

struct iterator_traits<T*> {
typedef ptrdiff_t difference_type;
typedef T value_type;

typedef T* pointer;

typedef T& reference;
typedef random_access_iterator_tag iterator_category;

The iterator category is explained from pag@onward. In order to make life
easier for programmers, the C++ Standard Library specifies one standard data type
for iterators from which each user-defined iterator can inherit:

namespace std {

template<class Category, class T,
class Distance = ptrdiff_t,
class Pointer = T*,
class Reference = T&>

struct iterator {

typedef Distance difference_type;
typedef T value_type;
typedef Pointer pointer;
typedef Reference reference;

typedef Category iterator_category; // see Sectior.1.4
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2.1.3

Via a public inheritance, these names are visible and usable in all derived
classes.

Distances

In the examples on pagédf, the required position in the array was determined by
the difference of two pointers or iterators. In C++, the difference of a subtraction of
pointers is represented by the data typeiff_t which is defined by the header
<cstddef> . However, the distance type may be different, dependent on the type of
the iterator. For this purpose, the appropriate data type for the distance between two
iterators can be chosen by the user. A standard function temjidedece()  then
determines the distance.

With the predefined iterator-traits templates it is possible to derive the type names
needed, and thdistance()  function can be written as follows:

template<class Inputlterator>

typename iterator_traits<Inputlterator>::difference_type

distance(Inputlterator First, Inputlterator Second) {
Il calculation

}

The calculation for iterators that work with a vector consists only of a subtrac-
tion. If the container is a singly-linked list, the calculation will consist of a loop
which counts the number of steps from the first iterator to the second.

The advantage of the traits templates is that only one type must be specified for
the instantiation of thelistance() -template. The return type is a distance type
specified in theterator_traits class. Theraits  classes allow definition of
the data type names suchdifference_type both for complex iterators and for
basic data types such as*

How does this work in detail? The compiler reads the return tyjpéseince()
and instantiates thigerator_traits template with the corresponding iterator.
Two cases must be distinguished:

e The iterator is of more complex nature, for example a list iterator. Then the sought
type iterator_traits<Iteratortype>::difference_type is identical
with Iteratortype::difference_type , as results from the evaluation of the
instantiatedterator_traits template. In the case of the singly-linked list of
pagel? this type results iptrdiff_t

e The iterator is a simple pointer, for examphe* . For a pointer type, no names
such aglifference_type can be internally defined vigpedef . The speciali-
zation of theiterator_traits template for pointers now ensures timatac-
cess is made to names of the iterator, because the required names can be found
directly in the specialization without having to pass through an iterator. Then
the sought typéterator_traits<lteratortype>::difference_type is
identical withptrdiff_t , as results from the evaluation of the instantiated spe-
cializediterator_traits template.
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Thus,distance() ~ can be described very generally, as shown above. Without
the traits mechanism, there would have to be specializations for all the pointers, not
only for pointers to basic data types, but also for pointers to class objects.
advance()

In order to advance an iterator by a given distance, the funatieance() can be
used:

template<class Inputlterator_type, class Distance_type>
void advance(lnputlterator_type& |, Distance_type N);

The iteraton is advanced by steps. For iterators that can move forward and
backward (bidirectional iterators)may be negative.

Categories

The STL provides different iterators for the container in question. Each of these
iterators can be assigned to one of the following five categories:

e input iterator

output iterator

forward iterator

bidirectional iterator

random access iterator

The categories correspond to the different capabilities of the iterators. For exam-
ple, an iterator responsible for writing into a sequential file cannot move backward.

A special kind of iterator used for inserting elements into containers will be
described in SectioB.5.

Input iterator

An input iterator is designed for reading a sequential stream of input data, that is,
anistream . No write access to the object is possible. Thus, dereferencing does not
supply an Ivalue. The program fragment shows the principle of use:

/I ‘Sourcelterator "is an input iterator
Sourcelterator = Stream_container.begin();
while(Sourcelterator != Stream_container.end()) {
Value = *Sourcelterator;
/I further calculations wittvalue ...
++Sourcelterator;
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Because of the stream property of the container associated with the input iterator,
it is not possible to remember a special iterator value in order to retrieve an already
read object at a later stage. Input iterators are suitable onlydmgdepass.

Output iterator

An output iterator is designed for writing not only into a container, but also into a
sequential stream of output datstfeam ). No read access to the object via deref-
erencing is possible. Dereferencing results in an Ivalue which should exclusively be
used on the left-hand side of an assignment.

/I ‘Destinationlterator " is an output iterator
*Destinationlterator = Value;
++Destinationlterator; 1 advance

The two instructions are usually combined to
*Destinationlterator++ = Value;

If the output iterator works on a stream, advancing is already carried out by the
assignment. Then, the- operation is an empty operation and exists only for reasons
of syntactic uniformity (see also pagés and63). Output iterators too are suitable
for only onepass. Only one output iterator should be active on one container — thus
we can do without comparison operations of two output iterators.

Forward iterator

As with the input iterator and the output iterator, the forward iterator moves forward.
In contrast to the iterators mentioned above, the values of this iterator may be stored
in order to retrieve an element of the container. This allows a multi-pass in one
direction. A forward iterator would, for example, be suitable for a singly-linked list.

Bidirectional iterator

A bidirectional iterator can do everything that a forward iterator can do. In addition,
it can movebackward so that it is suitable for a doubly-linked list, for example.
A bidirectional iterator differs from a forward iterator by the additional methods
operator--() (prefix) andoperator--(int) (postfix).

Random access iterator

A random access iterator can do everything that a bidirectional iterator can do. In
addition, it allows random access, as is needed for a vector. Random access is im-
plemented via the index operataperator]() . One consequence of this is the
possibility of carrying out arithmetic operations, completely analogous to the pointer
arithmetic of C++.

A further consequence is the determination of an order by means of the relational
operatorss, >, <=, and>=. In the following programpPosition  is a random access
iterator associated witlable , a vector containenl andn2 are variables of type
Distance_type  (See pag8&2).
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// Position is an iterator which points to a location somewhere inJidble
nl = Position - Table.begin();
cout << Table[nl] << endl; 1 is equivalent to:

cout << *Position << endl;

if(nl < n2)
cout << Table[nl] << "lies before "
<< Table[n2] << endl;

In the simplest cas@osition  can be of typént* , andnl andn2 of typeint .

2.1.5 Reverse iterators

A reverse iterator is always possible with a bidirectional iterator. A reverse iterator
movesbackwardthrough a container by way of the- operation. The start and end

of a container for reverse iterators are marked wikygin() (points to the last
element) andend() (fictitious position before the first element, an example follows
on page52). Some containers provide reverse iterators. These iterators are realized
with the predefined class

template<class Iterator>
class reverse_iterator;

An object of this class is initialized with a bidirectional iterator or a random ac-
cess iterator, depending on the type of the template parameter. Internally, a reverse
iterator works with the initializing iterator and puts a wrapper with determined ad-
ditional operations around it. A new interface is created for an existing iterator, so
that it can adapt to different situations. For this reason, classes that transform one
class into another are calledlaptors A bidirectional iterator can move backward
with the-- operation. This property is used to move from the end of a container to
its beginning by means of a reverse bidirectional iterator using-tr@peration.

The iterator adaptoreverse_iterator also provides the member function
base() which returns the current position as a bidirectional iteratase() is
needed to allow mixed calculations with normal and reverse iterators which work
on the same container:

container C; I any container type witpublic
/I predefined types for iterators

typename container:iterator | = C.begin(); I start ofC
I/ rbegin() points to the last element af

I/ rend() fictitious position before the first element.

typename container::reverse_iterator Rl = C.rbegin();

/I ... operations with the iterators, e.g. running backwards through it:
while(RI = C.rend()) {

/I ... do something witlf*RI)

++RlI;
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/I calculation of distance:
typename container::difference_type Distance =
distance(RlI, 1); I incorrect
/I compiler error message:
/IRl andl are not of the same type

typename container::difference_type Distance =
distance(Rl.base(), I); I correct

There are two kinds:

Reverse bidirectional iterator

This iterator can do everything that a bidirectional iterator can do. The only differ-
ence is the moving direction: the- operation of the reverse iterator has the same
effect as the- operation of the bidirectional iterators and vice versa.

Reverse random access iterator

This iterator can do everything the bidirectional reverse iterator described above
can do. In addition, the arithmetic operations , +=, and-= allow you to jump
backward and forward several positions at a time in the container. In the above
exampledistance()  uses the+ operation; with a random access iterator, how-
ever, it uses arithmetic. Thus, you can write:

Distance = Rl.base() - I;

The application of a reverse iterator is shown on pagjeApplication of iterator

categories in connection with containers and examples will be discussed only after
the introduction of the different types of containers (Sectaf.

2.1.6 Const iterators
The standard containers also provide iterators of the typet_iterator and

const_reverse_iterator . These iterators are comparable to a pointer to const,
e.g.const char* :they are not const but cannot be used to modify an element.

2.1.7 Tag classes

Each iterator of the STL is equipped with one of the following tags which can also
be employed in the users’ own programs. The tags are predefined as follows:

struct input_iterator_tag {};

struct output_iterator_tag {};



2.2

2.2.1

STREAM ITERATORS 37

struct forward_iterator_tag
: public input_iterator_tag {};

struct bidirectional_iterator_tag
. public forward_iterator_tag {};

struct random_access_iterator_tag
. public bidirectional_iterator_tag {};

Stream iterators

Stream iterators are used to work directly with input and output streams. The fol-
lowing sections show how stream iterators are employed for reading and writing
sequential files. Stream iterators use tkeand>> operators known from standard
input and standard output.

Istream iterator

The istream iteratoistream_iterator<T> is an input iterator and usepera-
tor>>()  for reading elements of typewith the well-known properties that ‘white
space,’ that is spaces, tabs, and line feeds are ignored when in front of an element and
are interpreted as separators when between two elements. Otherwise, all characters
of the input stream are interpreted according to the required data type. Erroneous
characters remain in the input and lead to endless loops, if no error treatment is
incorporated.

During its construction and with each advance usingthe istream iterator reads
an element of typ@. It is an input iterator with all the properties described in Sec-
tion 2.1.4 At the end of a stream, the istream iterator becomes equal to the stream
end iterator generated by the default construétoeam_iterator <T>() A
comparison with the stream end iterator is the only way of determining the end of a
stream. The following very simple program reads all character strings separated by
white space from a fileigtring.cppin the example) and outputs them line by line:

Il k2listring.cpp
#include<fstream>
#include<iostream>
#include<iterator>
#include<string>
using namespace std;

int main( ) {
/I defining and opening of input file
ifstream Source("istring.cpp");
istream_iterator<string> Pos(Source), End;

/* The iteratorEnd has no association witBource because all iterators of a type
which indicate the past-end position are considered to be equal.
*/
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tip

if(Pos == End)
cout << "File not found!" << endl;
else
while(Pos = End) {
cout << *Pos << endl;
++Pos;

Character strings are represented by the standard datstiiyjge . At first sight,
the basic data typehar* might have been used as well, but there is a hitch to it:
the iterator tries to read an object of typear* , but it is not possible to allocate
memory to this object, and so the program will probably ‘crash.’More complex types
are possible, as will be shown in the next sectidnd is generated by the default
constructor (with no arguments), aRds is the iterator associated with tBeurce
stream. The first read operation is already executed during construction with the
istream argument, so that the subsequent dereferencing intihe loop always
results in a defined value for the character string which is then written to the standard
output.

Structure of an istream iterator

It is possible to write an istream iterator with special properties which inherits
from theistream_iterator class. An example can be found in Chaptér To

show the methods usable by derived classes and the way of functioning as well,
a possible implementation for an istream iterator is shown. The template parameter
char_traits defines different types for different types of characteha( or wide
characters), quite in analogy to the already known traits classes for iterators.

namespace std {
/I possible implementation of an istream iterator

template<class T,
class charT = char,
class traits = char_traits<charT>,
class Distance = ptrdiff_t>
class istream_iterator :
public iterator < input_iterator_tag, T, Distance,
const T*, const T&> {
public:
typedef charT char_type;
typedef traits traits_type;
typedef basic_istream<charT traits> istream_type;

friend bool operator==(
const istream_iterator<T, charT, traits, Distance>&,
const istream_iterator<T, charT, traits, Distance>&);



STREAM ITERATORS 39

[* The constructor already reads the first element (if present). The private method
read() (see below) uses thre>-operator.

*
istream_iterator(istream_type& s)
:in_stream(&s) {
read();
}

/I The default constructor generates an end-iterator
istream_iterator() : in_stream(0) {}

/I copy constructor, assignment operator and destructor omitted!
const T& operator*() const { return value; }

const T* operator->() const { return &(operator*()); }

istream_iterator<T, charT, traits, Distance>&
operator++() {

read();

return *this;

}

istream_iterator<T, charT, traits, Distance>
operator++(int) {
istream_iterator<T, charT, traits, Distance> tmp
= *this;
read();
return tmp;

}

private:
istream_type *in_stream;
T value;

* If the stream is all right and not empty, an element is read wétd() . The
check (*in_stream) calls the type conversion operateoid* of the class
basic_ios  toyield the stream state.

*/
void read() {
if(in_stream) { 1l stream defined?
if(*in_stream) Il stream all right?
*in_stream >> value;
if(!(*in_stream)) i set undefined, if necessary

in_stream = 0;
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Two istream iterators are equal when both point to the same stream or to the end
of a stream, as shown by the equality operator:

template<class T, class charT, class traits, class Distance>
bool operator==(const istream_iterator<T, charT, traits,
Distance>& x,
const istream_iterator<T, charT, traits,
Distance>& vy) {
return x.in_stream == y.in_stream;

}

template<class T, class charT, class traits, class Distance>
bool operator!=(const istream_iterator<T, charT, traits,
Distance>& x,
const istream_iterator<T, charT, traits,
Distance>& y) {
return loperator==(Xx, y);

}

} /I namespace std

2.2.2 Ostream iterator

The ostream iteratarstream_iterator<T> usesoperator<<()  for writing ele-
ments. This iterator writes at each assignment of an element oftypis an output
iterator with all the properties described in Sectibh.4

Consecutive elements are normally written withdirectly into the stream, one
after the other and without separators. Most often, this is undesirable because the
result is often unreadable. To avoid this, the ostream iterator can at its construction
be equipped with a character string of tyder* which is inserted as a separator
after each element. In the example on pagethis is\n which is used to generate a
line feed after each output.

In contrast to the example on pagjé the data type to be read and written is to be
slightly more complex thastring . Therefore, the task is now to readi@éntifiers
from a file, according to the convention of a programming language, and to write
them line by line into another file. Identifiers shall be defined as follows:

o An identifier always starts with a letter or an underscore *

e Each following character occurring in an identifier is either alphanumeric (that is,
a letter or a digit) or an underscore.

Thus, it is evident that an identifier cannot be read with the usualperator.
Instead, we need an operator which considers these syntax rules and, for example,
ignores special characters. Furthermore, an identifier must be able to contain a cer-
tain number of characters. This is guaranteed since the standard C++ string class is
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used. An identifier should be able to be output with the usgalperator. With this
information, we can already construct a simple class for identifiers:

/I k2/identify/identif.h
#ifndef IDENTIF_H

#define IDENTIF_H

#include<iostream>

#include<string>

class Identifier {
public:
const std::string& toString() const { return theldentifier;}
friend std::istream& operator>>(std::istream&, Identifier&);
private:
std::string theldentifier;

h

The methodoString() allows you to generate a copy of the private variable
which can be read and modified without affecting the original. The comparison op-
erators are not really needed here but, on the other hand, containers are supposed
to be comparable, which assumes that the elements of a container are comparable
too. The comparison operators ensure that objects dfitgfier class can be
stored in containers.

inline bool operator==(const ldentifier& N1,
const Identifier& N2) {
return N1.toString() == N2.toString();

}

inline bool operator<(const Identifier& N1,
const ldentifier& N2) {
return N1.toString() < N2.toString();

}

std::ostream& operator<<(std::ostreamé&, const ldentifier&);
#endif

In order to find the beginning of an identifier, the implementation of the input
operator in the filédentif.cppfirst searches for a letter or an underscore.

/I k2/identify/identif.cpp
#include"identif.h"
#include<cctype>

std::istream& operator>>(std::istream& is, ldentifier& N) {
std::istream::sentry s(is);
if(!s) return is;
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/* The constructor of the sentry-object carries out system dependent work. In par-
ticular, it checks the input stream so that in case of error, we can terminate the
-operator immediately (seé ),

*/

std::string IDstring;

/I find beginning of word

char ¢ = "\0

while(is && !(isalpha(c) || '’ == c))
is.get(c);

IDstring += c;

/* When the beginning is found, all following underscores and alphanumeric char-
acters are collected. ‘White space’ or a special character terminates the reading
process.

*/

/I collect the rest
while(is && (isalnum(c) || '’ == ¢)) {
is.get(c);
ifisalnum(c) || '’ == c¢)
IDstring += c;

}

[* The last character read does not belong to the identifierioBteeamlibrary offers
the possibility of returning an unused character to the input so that it is available
to a subsequent program.

*

is.putback(c); 1/ back into the input stream

N.theldentifier = IDstring;
return is;

Implementation of the output operator is very easy; the intestriaf  variable
of an identifier is copied to the outpos :

ostreamé& operator<<(ostream& o0s, const Identifier& N) {

std::ostream::sentry s(0s);

if(s)
0s << N.toString();
return os;
}
For ostream::sentry s(os) the same applies as fdstream::sentry
s(is) (see above). That is all that is needed to use stream iterators to recognize

identifiers. Themain() program which stores the list of identifiers in the filifist
uses the above Identifier class and is surprisingly short.

/I k2/identify/main.cpp
#include<iterator>
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#include<fstream>
#include"identif.h"

int main( ) {
/I defining and opening of input and output files
std::ifstream Source("main.cpp");
std::ofstream Target("idlist");

std::istream_iterator<Identifier> iPos(Source), End,;

/I please note the separator strifgy *:
std::ostream_iterator<Identifier> oPos(Target, "\n");

if(iPos == End)

std::cout << "File not found!" << std::endl;
else

while(iPos != End) *oPos++ = *Pos++;

}

The last line of the above program is only an abbreviated form of the following
block:

{
Identifier temp = *iPos; 1 dereferencing
++iPos; /I read new identifier
*oPos = temp; /I write temp
++oPos; /I do nothing

}

Looked at more closely, ther operation for the ostream iterator is superfluous,
because it is already the assignment that aglisator<<() , thus triggering the
write process#++oPos actually causes nothing. There is, however, a good reason
why operator++()  has been incorporated into the ostream iterator: the notation of
the line

while(iPos != End) *oPos++ = *Pos++;

can thus be exactly as it is used with pointers to basic data types. This C++ idiom
will be discussed again in Secti@nb.

Structure of an ostream iterator

It is even possible to write an ostream iterator with special features which inherits
from theostream_iterator class. To show the usable methods for derived classes
and the way how they work, a possible implementation ofoieam_iterator

is shown. The template-parametear_traits defines different types for different
kind of characterschar or wide characters).

namespace std {
template<class T, class charT=char,
class traits=char_traits<charT> >
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class ostream_iterator :
public iterator <output_iterator_tag, void, void,
void, void> {

public:

typedef charT char_type;

typedef traits traits_type;

typedef basic_ostream<charT,traits> ostream_type;

ostream_iterator(ostream_type& s)
. out_stream(&s), delim(0) {

}

ostream_iterator(ostream_type& s,
const charT* separator)
. out_stream(&s), delim(separator) {

}

/I copy constructor and destructor omitted

/I assignment operator:
ostream_iterator<T,charT,traits>&
operator=(const T& value) {
*out_stream << value;
if(delim) { 1 put out separator?
*out_stream << delim;
}

return *this;

}

/I operators only for idiomatic notation, for example*iter++
ostream_iterator<T,charT,traits>& operator*() {
return *this;

}

ostream_iterator<T,charT,traits>& operator++() {
return *this;

}

ostream_iterator<T,charT,traits>& operator++(int) {
return *this;

}

private:

ostream_type* out_stream;

const char_type* delim; // for separation of output elements
3

} /I namespace std
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3.1

Summary:A container is an object that is used to manage other objects which in this
context are called elements of the container. It deals with allocation and deallocation
of memory and controls insertion and deletion of elements. The algorithms that work
with containers rely on a defined interface of data types and methods which must also
be adhered to by user-defined containers if proper functioning of the algorithms is
to be guaranteed. The containeestor ,list , anddeque are described, together

with their properties. At the end of the chapter, the peculiarities of cooperation be-
tween iterators and containers are discussed.

In part, the STL containers are typical implicit data types in the sense of Sécfion
They includevector , list , anddeque . Other containers, in contrast, are abstract
data types which are implemented by means of the implicit data types. These include
stack , queue , andpriority_queue

Further abstract data types a® , map, multiset , andmultimap . They are
implemented by means of so-called red-black trees ). All ab-
stract data types which do not themselves represent implicit data types can easily be
recognized from the fact that thegeappropriate implicit data types. Abstract data
types are described separately in Chagter

Before the individual types of container are introduced, the data types and
methods common to all containers will be discussed.

Data type interface

Each container provides a public set of data types that can be used in a program. The
data typevector<int>::iterator has already been mentioned on pagk can
be identical to a pointer type suchiag , but this is not compulsory.

The aim of data types is to ensure that the interface to a container in a program
is unigueat compile time. This means that, for example, you can design a several
megabytes size vector which is not kept in memory, but is kept as a file on hard disk.
Even in this case, you could still usector<int>::iterator as the data type
without any danger, but this data type would then be anything biritarpointer.

The actual implementation of vector element access remains hidden to the user of
the container.
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3.2

3.2.1

Table 3.1 shows the container data types required for user-defined containers
and already provided by the containers of the STL. Xdte the data type of the
container, for exampleector<int> , andT be the data type of a container element,

for exampleint . Thus, the typeector<int>::value_type is identical toint .
Data type Meaning
X::value_type T
X::reference reference to container element
X::const_reference ditto for read-only purposes
X::iterator type of iterator
X::const_iterator ditto, but cannot be used to modify an element
X::difference_type signed integral type (see distance type, page
X::size_type unsigned integral type for size specifications

Table 3.1: Container data types.

Container methods

Each container provides a public set of methods which can be used in a program.
The methodsegin() andend() have already been mentioned and used (pages
and8). Table3.2 shows the container methods required for user-defined containers
and already provided by the STL containetss the denomination of the container

type.

An example of thewap() method can be found on pagé The maximum pos-
sible size of a container, determined witlx_size() , depends among other things
on the memory model (only for MS-DOS). vector<int>  with a 16-bitsize_t
can contain at most 32 767 elements. The current size, returned &iydf)e func-
tion, results from the distance between beginning and end, as calculated by the func-
tion distance(a.begin(), a.end(), n) described on page2.

In addition to the above-mentioned methods, there are the relational operators
==, I=, <, >, <=, and>=. The first two,== and!=, are based on comparison of
container size and comparison of elements of typéor which operator==()
must be defined. The remaining four are based on a lexicographic comparison of the
elements, for whiclvperator<()  must be defined as order relation. The relational
operators are defined in namespatte and make use of the algorithregual()
andlexicographical_compare() which will be discussed later.

Reversible containers

Reversible containers allow iterators to travelbsekward Such iterators may be
bidirectional and random access. For these kinds of container, the additional data

types



SEQUENCES 47

Return type method Meaning

X() default constructor; creates empty can-
tainer

X(const X&) copy constructor

~X() destructor; calls the destructors for all ele-
ments of the container

iterator begin() beginning of the container

const_iterator begin() beginning of the container

iterator end() positionafterthe last element

const_iterator end() ditto

size_type max_size() maximum possible container size (see text)

size_type size() current size of the container (see text)

bool empty() size() == or begin() == end()

void swap(X&) swapping with argument container

X& operator=(const X&) assignment operator

bool operator==(const X&) operator==

bool operator!=(const X&) operaton=

bool operator<(const X&) operatorx

bool operator>(const X&) operator>

bool operator<=(const X&) operatork=

bool operator>=(const X&) operator-=

Table 3.2: Container methods.
X::reverse_iterator
X::const_reverse_iterator
and the methods

rbegin() 1 points to last element
rend() i points to fictitious position before the first element

are provided which return a reverse iterator.

Sequences

A sequence is a container whose elements are arranged in a strictly linear way. Table
3.3 shows the methods which must be present for sequences in addition to those of
Table3.2and which therefore exist in the STL.

Notation for intervals

Itis frequently necessary to specify intervals. For this purpose, the usual mathemati-
cal interval is used, where square brackets denote intervals including the boundary
values, and round parentheses denote intervals excluding the boundary values. Thus,
[i, §) is an interval including and excluding . In Table3.3 X s the type of a
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sequential container; andj are of input iterator typep andq are dereferenceable
iterators;n is of typeX::size_type andt is an element of typ&::value_type

Return type method Meaning

X(n, t) Creates a sequence of tygewith n copies of
t.

X(@, j) Creates a sequence with the elements of |the
rangefi, j)  copied into the sequence.

iterator insert(p, t) Copies a copy of before the locatiop. The
return value points to the inserted copy.

void insert(p, n, t) Copiesn copies oft before the locatiop.

void insert(p, i, j) Copies the elements of the ranfiej) be-
fore the locatiomp. i, j refer to another cont
tainer than that for whicimsert() is called.

iterator erase(q) Deletes the element pointed to lgy The re-

turned iterator points to the element immed
ately following q prior to the deletion opera
tion, provided it exists. Otherwisend() is
returned.

iterator erase(ql, g2) Deletes the elements of the range, g2)
The returned iterator points to the element that
pointed tog2 immediately prior to the deletion
operation, provided it exists. Otherwisagd()
is returned.

void clear() Deletes all elements; corresponds to
erase(begin(), end()).

Table 3.3: Additional methods for sequences.

The STL contains three kinds of sequential containers, nameetgr |, list
anddeque . A list (list ) should be used when frequent insertions and deletions are
needed somewhere in the middle. A queue with two eddguge = double ended
gueue) is reasonable when insertion and deletion frequently take place at either end.
vector corresponds to an arrayeque andvector allow random access to ele-
ments.

The above-mentioned operations together with their containers need only con-
stant time. Other operations, however, such as insertion of an element into the middle
of a vector or a queue, are more expensive; the average cost increases linearly with
the number of already existing elements.

The sequential containevsctor , list , anddeque provided by the STL offer
several other methods, listed later in TaBl&. The methods take constant time. In
addition, there are the operators:
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template<class T>
bool std::operator==(const Container<T>& X,
const Container<T>& vy);

template<class T>
bool std::operator<(const Container<T>& X,
const Container<T>& );

for comparison, wher€ontainer can be one of the typesctor ,list ordeque.
In addition to the data types of Tali#el, the types of Tabl&.4 are provided.

Data type Meaning
X::pointer pointer to container element
X::const_pointer ditto, but cannot be used to modify container elements

Table 3.4: Additional data types faector , list , anddeque .

3.3.1 Vector

Now that all essential properties of a vector container have been described, let us
look at some examples of its application. First, a vector with 10 places is filled with
the numbers 0 to 9. At the end, the number 100 is appended, which automatically
increases the container size. Subsequently, the vector is displayed in two ways: the
first loop uses it as a common array; the second loop uses an iterator.

/I k3/vector/intvec.cpp

/I example folint vector container
#include<vector>
#include<iostream>

using namespace std;

int main() {
/I anint vector of 10 elements
vector<int> intV(10);

for(size_t i = 0; i < intV.size(); ++i)

intV[i] = i, /i fill vector, random access
/I vector increases on demand
intV.insert(intV.end(), 100); i append the number 100
/I use as array
for(size_t i = 0; i < intV.size(); ++i)

cout << intV[i] << endl;

/I use with an iterator
for(vector<int>:iterator | = intV.begin();

| 1= intV.end(); ++l)
cout << * << endl;
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Return type method Meaning

void assign(n, t = T()) Deletes the container elements
and subsequently inserts ele-
mentst .

void assign(i, j) Deletes the container elements

and subsequently inserts the ele-
ments of the iterator rangg,

-

reference front() Supplies a reference to the first el-
ement of a container.

const_reference front() Ditto, but cannot be used to mod-
ify container elements.

reference back() Supplies a reference to the last el-
ement of a container.

const_reference back() Ditto, but cannot be used to mod-
ify container elements.

void push_back(t) Insertst at the end.

void pop_back() Deletes the last element.

void resize(n, t = T()) Changes the container size.-

size() elements are inserted a
the end osize()-n  elements are
deleted at the end, depending on
whethern is greater or less than
the current size.

reverse_iterator rbegin() Returns the begin iterator fg
backward traversal. This iteratg
points to the last element.

= =

const_reverse_iterator rbegin() Ditto, but cannot be used to mod
ify container elements.

reverse_iterator rend() Returns the end iterator for bac
ward traversal.

const_reverse_iterator rend() Ditto, but cannot be used to mod
ify container elements.

Table 3.5: Additional methods feector |, list , anddeque.

vector<int> newV(20); I all elements are 0
cout << " newV = "

for(size_t i = 0; i < newV.size(); ++i)
cout << newV[i] << '



/lswap()  from Table3.2shows a very fast method for

/I swapping two vectors.
newV.swap(intV);

cout << "\n newV after swapping = ",
for(size_t i = 0; i < newV.size(); ++i)
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cout << newV[i] << ' I old contents ofntV

cout << "\n\n intV ="

for(size_t i = 0; i < intV.size(); ++i)

cout << intV[i] <<’ 7 1 old contents ohewV

cout << endl;

In the next example, the stored elements argrofy  type. In addition, it shows
how an element is deleted which leads to a change in the number of elements. All
elements following the deleted element shift by one position. This process is a time-
consuming operation. Finally, @verse_iterator is used which traverses the

container backward.

/I k3lvector/strvec.cpp

/I example forstring  vector container
#include<vector>

#include<iostream>

#include<string>

using namespace std;

int main() {
/I astring vector of 4 elements
vector<string> stringVec(4);
stringVec[0] = "First";
stringVec[1l] = "Second";
stringVec[2] = "Third";
stringVec[3] = "Fourth";

/I vector increases size on demand
stringVec.insert(stringVec.end(), string("Last"));
cout << "size() = "

<< stringVec.size() << endl; 1

/I delete the element ‘Second’
vector<string>::iterator | = stringVec.begin();
++l;
cout << "erase: "

<< *| << endl;
stringVec.erase(l); 1 delete Second
cout << "size() = "

<< stringVec.size() << endl; 1

)

2nd position
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3.3.2

for(l = stringVec.begin(); | != stringVec.end(); ++l)
cout << * << endl;

/* Output: First
Third
Fourth
Last
*/
cout << "backwards with reverse_iterator:" << endl;
for(vector<string>::reverse_iterator
revl = stringVec.rbegin(); revl != stringVec.rend();
++revl)
cout << *revl << endl;
} /I main.cpp

On average, deletion or insertion of an element at the end of a vector takes con-
stanttime, thati€)(1) in complexity notation (for exampl@pp_back() ). Insertion
or deletion of an element somewhere in the middle takes a time proportional to the
number of elements that have to be shifted, tliys;) for n vector elements.

It should be noted that iterators previously pointing to elements of the vector
become invalid when the elements in question are shifted by the insertion or deletion.
This also applies when the available space of the vector becomes insufficient for
insert() and new space is allocated. The reason for this is that after allocation of
new, larger memory space all elements are copied into the new space and therefore
all old positions are no longer valid.

In addition to the methods of Tabl&s2to 3.5, vector provides the methods of
Table3.6.

List
This example refers to the program on padefor the determination of identifiers
contained in a file. It makes use of thdentifier class described there, with

the difference that the identifiers are not written into a file, but into a list which is
subsequently displayed:

/I k3llist/identify/main.cpp
#include<iterator>
#include<fstream>
#include<list>
#include"identif.h"

int main( ) {
/I define and open input file
std::ifstream Source("main.cpp");

std::list<ldentifier> Identifier_list;

std::istream_iterator<Identifier> iPos(Source), end;
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Return type method Meaning

reference operator[](n) Returns a reference to tin¢h element
(usagea[n] ,whenaisthe container).

const_reference operator[](n) Ditto, but cannot be used to modify

container elements.

reference at(n) Checks ifn is within the valid range
If yes, a reference to theth element

is returned, otherwise an exception|is
thrown.

const_reference at(n) Ditto, but cannot be used to modify
container elements.

void reserve(n) Reserves memory space, so that the

available space (capacity) exceeds the
currently needed space. Aim: avoid-
ing memory allocation operation dur
ing vector use.

size_type capacity() Returns the capacity value (see
reserve() ). size() is always less
than or equal teapacity()

Table 3.6: Additional vector methods.

if(iPos == end)
std::cout << "File not found!" << std::endl;

else
while(iPos != end)
/I insert identifier and read next one
Identifier_list.push_back(*iPos++);

/I output
std::list<ldentifier>::const_iterator
| = Identifier_list.begin();
while(l = Identifier_list.end())
std::cout << *I++ << std::endl;

}

The structure of thenain() programs resembles the one on pdgeThis re-
semblance facilitates learning how to use iterators and containers. In contrast to the
vector,insert() anderase() do not invalidate iterators that point to elements of
the list, with the exception of an iterator that points to an element to be deleted.

In addition to the methods of Tabl&s2to 3.5, list  provides the methods of
Table3.7. Each operation takes constant tind&{)) if not otherwise specified. The
predicates mentioned in the table are simply function objects (description on page
21). They determine whether a statement about an element is true or false.
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One could, for example, imagine a function objedor Identifier objects

which returns whether the identifier begins with an upper case lettesve _if(P)
would then delete all elements of the list that have an upper case initial.

For two of the methods of Table 7, namelymerge() andsplice() , sample

applications are shown.

Merging of sorted lists

Two small sorted lists are to be merged into one big sorted list. After the end of
the process, the calling list contains all elements of the two lists, whereas the called
list is empty.merge() is stable; thus, the relative order of the elements of a list is

maintained.

/I k3llist/merge.cpp
#include<list>
#include<iostream>

/I auxiliary function
void displayintList(const std::list<int> & L) {
std::list<int>::const_iterator | = L.begin();

while(l != L.end())
std::cout << *l++ << '

std::cout << " size() ="
<< L.size() << std:endl;

}

int main( ) {
std::list<int> L1, L2;

/I fill lists with sorted numbers
for(int i = 0; i < 10; ++i) {

L1.push_back(2*i); 1 even numbers
L2.push_back(2*i+1); i odd numbers
}
displaylIntList(L1); // 02468101214 16 18 size() =10
displayIntList(L2); // 1357911131517 19 size() =10
L1.merge(L2); I merge

displayIntList(L1);
/I 01234567891011121314151617 18 19 size() =20
displayIntList(L2); // size() =0

The example first outputs a list of even numbers and a list of odd numbers. Af-
ter themerge() operation, the first list contains all the numbers; the second list is

empty.
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Return type method

Meaning

void

void

void

T& 1)

void

void

void

void

void

void

void
pos,

void

merge(list&)

merge(list&,
Compare_object)

push_front(const

pop_front()
remove(const T& t)

remove_if(
Predicate P)

reverse()

sort()

sort(
Compare_object)

splice(iterator
list& x)

splice(iterator p,

list&x, iterator i)

void
pos,
first,

void

void

splice(iterator
list& X, iterator
iterator last)

unique()

unique(
binaryPredicate)

Merges two sorted lists (time complexit
O(n)).

Merges two
Compare_object
of elementsQ(n)).

Inserts an element at the beginning.

sorted
for

lists,
the

using
comparison

Deletes the first element.

Removes all elements that are equal to
passed elememnt(O(n)).

55

<

the

Removes all elements to which the predicate

applies O(n)).

Reverses the order of elements in the
(O(n)).

Sorts the elements in the list. Time complex

is O(nlogn). The sorting criterion is the
operator defined for the elements.

assort() , but with the sorting criterion of
the Comparison object (see patfd.

Inserts the contents of list beforepos . Af-
terwardsx is empty.

Inserts elementi of x beforep and removes
* fromx.

Inserts elements in the rangirst,
last)
from x. Calling the same object (that i&x
== this ), takes constant time, otherwise, t
cost is of the orde©(n). pos must not lie in
the rangdfirst, last)

of x beforepos and removes them

ist

ty

ne

Deletes identical consecutive elements except

for the first one (cos®(n)). Application to a
sorted list leads to the effect that no elemé
occurs more than once.

Ditto, only that instead of the identity cri
terion another binary predicate is used.

Table 3.7: Additional methods for lists.

2Nt
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3.3.3

Splicing of lists

The term ‘splicing’ originates from the nautical cabling technique and denotes the
fastening together or uniting of several ropes by tucking several strands of rope or
cable into each other. Here, we talk about uniting lists. Of the possibilities listed in
Table 3.7, we only look at how to transfer a section of a list into another list. From
the previous example, only the line containing tinerge() operation is substituted

with the following program fragment:

list<int>:iterator | = L2.begin();
advance(l, 4); I 4 steps
L1.splice(L1.begin(), L2, I, L2.end());

State of the lists beforsplice()
L1:024681012141618
L2: 1357911131517 19

State of the lists aftesplice()
L1:91113151719024681012141618
L2: 1357

All elements of listL2 from position 4 (counting starts with 0) onward up to
the end of the list are transferred to the beginning of Uist Afterwards, listL2
contains only the first four elements, whereasllisthas grown by six elements at
the beginning.

Deque

Deque is an abbreviation fdouble ended queukike a vector, this sequence allows
random access iterators and, exactly like a list, it allows insertion and deletion at the
beginning or the end in constant time. Insertions and deletions somewhere in the
middle, however, are quite costlp)(n)), because many elements must be shifted.

A deque might be seen as being internally organized as an arrangement of several
memory blocks, where memory management is hidden in a similar wasctor

During insertion at the beginning or the end, a new block of memory is added when-
ever available space is no longer sufficient. In addition to the methods of TaBles

to 3.5, deque provides the methods of TabBesS.

3.3.4 showSequence

A remark to start with:showSequence() is not an algorithm of the STL, but a
sequence display tool written for the examples in this book. The function is defined:

/I Template for the display of sequences (filelude/showseq)h
#ifndef SHOWSEQ_H

#define SHOWSEQ_H

#include<iostream>
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Return type method Meaning
reference operator[]J(n) Returns a reference to tgh element
(usagea[n] , whena is the container).
const_reference Ditto, but cannot be used to modify con-
operator(](n) tainer elements.
reference at(n) Returns a reference to timh element,

if n is within the valid range. Otherwise
an exception is thrown.

const_reference at(n) Ditto, but cannot be used to modify con
tainer elements.

void push_front(const T& t) Inserts an element at the beginning.
void pop_front() Deletes the first element.

Table 3.8: Additional deque methods.

namespace br_stl {
template<class Container>
void showSequence(const Container& s, const char* sep = " ",
std::ostream& where = std::cout) {
typename Container::const_iterator iter = s.begin();
while(iter = s.end())
where << *iter++ << sep;
where << std::endl;
}

}
#endif

If nothing different is specified, output is writtend¢out . The sequence is output
completely, that is, fronbegin() to (but excluding)end() . The sep character
string separates the individual elements. It defaults to a space if nothing else is speci-
fied in the function call. With these definitions, you can simply write

br_stl::showSequence(v);
in your program to display aint vectorv, instead of

std::vector<int>::const_iterator iter = v.begin();
while(iter != v.end()) std::icout << *iter++ << " ",
std::cout << std::endl;

The function is neither designed for nor suited to simple C arrays. Its advan-
tage is that because of the shorter notation, programs become more readable. The
function template is read into memory witinclude<showseq.h> . Inclusion of
#include<iostream> is done byshowseq.land is therefore no longer needed in
programs usinghowSequence()
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3.4 lterator categories and containers

In this section, the different iterator categories which are associated to the containers
are evaluated, for example in order to select the most effective algorithm possible at
compile time. The following example shows how at compile time the correct func-
tion for the display of the iterator type is selected from a set of overloaded functions:

/I k3literator/ityp.cpp determination of the iterator type
#include<string>

#include<fstream>

#include<vector>

#include<iterator>

#include<iostream>

using namespace std;

/I template for getting the type (iterator-tag) of an iterator
template<class Iterator>
typename iterator_traits<lterator>::iterator_category
get_iteratortype(const Iterator&) {

return iterator_traits<lterator>::iterator_category();

}

/I overloaded functions
void whichlterator(const input_iterator_tag&) {
cout << "Input iterator!" << endl;

}

void whichlterator(const output_iterator_tag&) {
cout << "Output iterator!" << endl;

}

void whichliterator(const forward_iterator_tag&) {
cout << "Forward iterator!" << endl;

}

void whichlterator(const random_access_iterator_tag&) {
cout << "Random access iterator!" << endl;

}

/I application
int main( ) {
/I In case of basic data types \waveto use the iterator_traits template
int *ip; I random access iterator
/I display of iterator type
whichlterator(get_iteratortype(ip));
whichlterator(
iterator_traits<int*>::iterator_category());
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/I define a file object for reading
/I (actual file is not required here)
ifstream Source;

/I an istream_iterator is an input iterator
istream_iterator<string> IPos(Source);

/I display of iterator type

whichlterator(get_iteratortype(IPos)); // or alternatively:

whichlterator(iterator_traits<istream_iterator<string> >
::iterator_category());

/I define a file object for writing
ofstream Destination;

/I an ostream_iterator is an output iterator
ostream_iterator<string> OPos(Destination);

/I display of iterator type

whichlterator(get_iteratortype(OPos)); // or alternatively:

whichlterator(iterator_traits<ostream_iterator<string> >
:literator_category());

vector<int> v(10);
/I display of iterator type
whichlterator(get_iteratortype(v.begin()));
/I or some other iterator
whichlterator(iterator_traits<vector<int>::iterator>
:literator_category());

A further example shows how to write an overloaded function whose selected
implementation depends on the iterator type. The task is to output thedémihents
of a container by means of the functiehowLastElements() . It is assumed that
at least bidirectional iterators can work on the container. Thus, itis sufficient to equip
the function with an iterator to the end of the container and the required number.

/I k3literator/iappl.cpp
#include<iostream>
#include<list>
#include<vector>
#include<iterator>

/I calling implementation
template<class Iterator>
void showLastElements(Iterator last,
typename std::iterator_traits<Iterator>::difference_type

n {

showLastElements(last, n,
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std::iterator_traits<Iterator>::iterator_category());

}

/* This function now calls the corresponding overloaded variation, where the selection at
compile time is carried out by the parameitgrator_category() whose type
corresponds to an iterator tag. Therefore, the third parameter is an iterator tag object
constructed by calling its default constructor.

*/

/I first overloaded function
template<class lIterator, class Distance>
void showLastElements(Iterator last, Distance n,
std::bidirectional_iterator_tag) {
Iterator temp = last;
std::advance(temp, -n);

while(temp != last) {
std::cout << *temp << ' ’;
++temp;

}

std::cout << std::endl;

}

/* The bidirectional iterator does not allow random access and therefore no iterator arith-
metic. Only the operators+ and-- are allowed for moving. Thereforadvance()
is used to go bachk steps and then display the remaining elements. A random access
iterator allows arithmetic, which makes the implementation of this case slightly easier:
*/

/I second overloaded function

template<class Iterator, class Distance>

void showLastElements(lterator last, Distance n,

std::random_access_iterator_tag) {
Iterator first = last - n; 1 arithmetic
while(first 1= last)
std::cout << *irst++ << ' ;

std::cout << std::endl;

}

/' main-program

int main( ) {
std::list<int> L; 1 list
for(int i=0; i < 10; ++i) L.push_back(i);

/I call of 1st implementation
showLastElements(L.end(), 5L);  / 5 long

std::vector<int> v(10); 1 vector
for(int i = 0; i < 10; ++i) V[i] = i



3.4.1

ITERATOR CATEGORIES AND CONTAINERS 61

/I call of 2nd implementation
showLastElements(v.end(), 5); I 5int

}

This scheme — providing a function as an interface which then calls one of the
overloaded functions with the implementation — allows you to use completely dif-
ferent implementations with one and the same function call. This allows you, in a
properly designed program, to change a container type without having to modify the
rest of the program.

Derivation of value and distance types

The STL is based on the fact that algorithms use iterators to work with containers.
However, this also means that inside an algorithm the container and its properties
are not known, and that all the required information must be contained in the itera-
tors. The information are determined by means of the iterator traits classes. A short
example follows to show how an algorithm is chosen dependent on the iterator type,
and how to derive and use value and distance types. Let us assume two different
containers, a list and a vector, in which the element order is to be reversed. Only
iterators to the beginning and the end of the corresponding containers are passed to
the function namedkverselt() (to avoid a conflict withstd::reverse() ).

/I k3literator/valdist.cpp

/I Determination of value and distance types

#include<showseq.h>

#include<list>

#include<vector>

#include<iterator>

template<class Bidirectionallterator>
void reverselt(Bidirectionallterator first,
Bidirectionallterator last) {
reverselt(first, last,
typename std::iterator_traits<Bidirectionallterator>
.iterator_category());

}

/* Reversing the order means that one element must be intermediately stored. For this, its
type must be known. Following the well-proven scheme, the function calls the suitable
implementation for the iterator type:

*/

template<class Bidirectionallterator>
void reverselt(Bidirectionallterator first,
Bidirectionallterator last,
std::bidirectional_iterator_tag) {
/I Use of the difference type to calculate the number of exchanges. The
/I difference type is derived from the iterator type:
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typename std::iterator_traits<
Bidirectionallterator>::difference_type
n = std:distance(first, last) -1;

while(n > 0) {
/I The value type is also derived from the iterator type:
typename std::iterator_traits<Bidirectionallterator>
wvalue_type temp = *first;
*first++ = *--last;
*last = temp;
n-= 2;

}

/* The second implementation uses arithmetic to compute the distance, which much faster,
but is possible only with random access iterators:
*/

template<class RandomAccessliterator>

void reverselt(RandomAccesslterator first,
RandomAccesslterator last,
std::random_access_iterator_tag) {

/* Use of the difference type to calculate the number of exchanges. The difference
type is derived from the iterator type:

*
t)ﬁpename std::iterator_traits<RandomAccesslterator>
.difference_type n = last -first -1; // arithmetic!
while(n > 0) {
/I The value type is also derived from the iterator type:
typename std::iterator_traits<RandomAccesslterator>
value_type temp = *first;
*first++ = *--last;
*last = temp;
n-= 2
}

/* At first sight, one could think that the algorithm could do without the distance type when
comparing iterators and stop whérst becomes >3ast . However, this assump-
tion only holds when a > relation is defined for the iterator type at all. For a vector, where
two pointers point to a continuous memory area, this is no problem. It is, however, im-
possible for containers of a different kind, such as lists or binary trees.

*/

int main() {
std::list<int> L;
for(int i=0; i < 10; ++i) L.push_back(i);
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reverselt(L.begin(), L.end());
br_stl::showSequence(L);

std::vector<double> V(10);

for(int i = 0; i < 10; ++i) V[i] = i/10;
reverselt(V.begin(), V.end());
br_stl::showSequence(V);

Inheriting iterator properties

When user-defined iterators are built, they should conform to those of the STL. A
bidirectional iterator can be written as follows:
/I user-defined bidirectional iterator usiimg as value type
class Mylterator
. public std::iterator<
std::bidirectional_iterator_tag, int> {
/I program code fooperator++()  , and so on

}

Hereint may be substituted by a suitable value type, if needed. There can be up to
five template parameters: 1. iterator type, 2. value type, 3. distance type, 4. pointer
type, 5. reference type. The last three are optional.

lterators for insertion into containers

The idiom shown on pagé3
while(first = last) *result++ = *first++;

copies an input range into an output range, whetes andiPos in Section2.2.2
represent output and input iterators for streams. An output stream normally has more
than sulfficient space for all copied elements. The same idiomatic notation can also
be used for the copying of containers; the previous contents of the target container
are overwritten:

container Source(100), Target(100);
/I fill Source with values here

typename container::iterator first = Source.begin(),
last = Source.end(),
result = Target.begin();

/I copying of the elements
while(first !'= last) *result++ = *first++;

There can, however, be a problem: this scheme fails whendfyet container
is smallerthan theSource container, because at some tiresult  will no longer
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be defined. Perhaps the old contentSatet should not be overwritten, but should
remain intact and the new contents should just be added.

For these purposes, predefined iterators exist which allow insertion. Insert itera-
tors are output iterators.

The insert iterators provide the operatopgrator() andoperator++() in
both prefix and postfix version, together witperator=() . All operators return a
reference to the iterator. The first two have no other function. They exist only for
keeping the usual notatioresult++ = *last++

/I Implementation of some operators (excerpt)
template <class Container>
class insert_iterator
. public iterator<output_iterator_tag,
typename Container::value_type,
typename Container::difference_type> {
public:
insert_iterator<Container>& operator*() {return *this;}
insert_iterator<Container>& operator++() {return *this;}
insert_iterator<Container>& operator++(int)
{ return *this;}
/I ...and soon

h

Only the assignment operator calls a member function of the container, which is
dependent on the kind of container. Now, let us look at the expressisult++
= *last++ in detail, remembering that the order of evaluation is from right to left,
because unary operators are right-associatizst. is the value to be inserted. The
call of the first two operators yields a reference to the iterator itself, sodbalt
can be substituted successively:

result.operator++(int) .operator*().operator=(*last++) ;

result.operator*() .operator=(*last++) ;

result.operator=(*last++) ;

The compiler optimizes the first two calls, so that the task of insertion only re-
mains with the assignment operator. The three different predefined insert iterators
described in the next sections differ exactly on this point.

back insert_iterator

A back insert iterator inserts new elements into a container at the end, making use
of the element functiopush_back()  of the container, called by the assignment
operator:

/I Implementation of an assignment operator
back_insert_iterator<Container>& operator=(
typename Container::const_reference value) {
/l ¢ points to the container (private pointer attribute of the iterator)



ITERATORS FOR INSERTION INTO CONTAINERS 65

c->push_back(value);
return *this;

}

The following example shows the application of a back insert iterator in which
the numbers 1 and 2 are appended to a vector:

/I k3literator/binsert.cpp

/I Insert iterators : back insert
#include<showseq.h>
#include<vector>
#include<iterator>

int main() {
std::vector<int> aVector(5); 1 5 zeros
std::cout << "aVector.size() = "
<< aVector.size() << std::endl; // 5
br_stl::showSequence(aVector); 1 00000

std::back_insert_iterator<std::vector<int> >
aBackinserter(aVector);

/I insertion by means of the operatiohs++, =
int i = 1;
while(i < 3)
*aBackinserter++ = i++;
std::cout << "aVector.size() = "

<< aVector.size() << std:endl; // 7
br_stl::showSequence(aVector); I 0000012
}
The predefined functioback_inserter() returns a back insert iterator and

facilitates passing iterators to functions. Let us assume a fun@jgradd() which
copies the contents of one container into another or adds it when the iterator used is
an insert iterator:

template <class Inputlterator, class Outputlterator>
Outputlterator copyadd(Inputlterator first,
Inputlterator last,
Outputlterator result) {
while (first != last)
*result++ = *irst++;
return result;

}

The above program can be integrated with the following lines in which this func-
tion is passed the iterator created wititk_inserter()

/I copying with functionback_inserter()
std::vector<int> aVector2; 1 sizeis 0
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copyadd(aVector.begin(), aVector.end(),
back_inserter(aVector2));
std::cout << "new: aVector2.size() = "
<< aVector2.size() << std::endl;
br_stl::showSequence(aVector2);

front_insert_iterator

A front insert iterator inserts new elements into a container at the beginning, mak-
ing use of the member functiopush_front() of the container, called by the
assignment operator. Thus, it is very similar to the back insert iterator. In the follow-
ing exampleljist is used instead ofector , becausgush_front is not defined

for vectors.

/I k3literator/finsert.cpp

/I Insert iterators: front inserter
#include<showseq.h>
#include<list>
#include<iterator>

int main() {
std::list<int> aList(5); 1l 5 zeros

std::cout << "alist.size() = "
<< alist.size() << std:endl; // 5

br_stl::showSequence(aList); I 00000

std::front_insert_iterator<std::list<int> >
aFrontinserter(aList);

/I insertion by means of the operatiohs++, =
int i = 1;
while(i < 3)

*aFrontinserter++ = i++;

std::cout << "alist.size() = "

<< alist.size() << std:endl; // 7
br_stl::showSequence(aList); I 2100000
}
The copyadd() - example at the end of the sectiback_insert_iterator
works in a similar way with the functiostd::front_inserter() (see example

k3/iterator/finserter.cpp

insert_iterator

Now, something may have to be inserted not just at the beginning or at the end, but
at an arbitrary position in the container. The insert iterator has been designed for this
purpose. Since it can also insert at the beginning and at the end, it can also be used
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instead of the back and front insert iterators already described. It must be passed
the insertion point. For this purpose, the insert iterator uses the member function

insert() of the container, called by the assignment operator, whose implementa-

tion is shown here:

/I Possible implementation of the assignment operator
insert_iterator<Container>& operator=(
typename const Container::value_type& value) {

Il iter is a private variable of thimsert_iterator object
iter = theContainer.insert(iter, value);
++iter;

return *this;

The private variableheContainer  is a reference to the container, which is
passed to the constructor together with the insertion position, as shown in the fol-
lowing example. The insertion position is stored in the private varigdle .

/I k3literator/insert.cpp
/I Insert iterator
#include<showseqg>
#include<vector>
#include<iterator>

int main() {
std::vector<int> aVector(5); 1 5 zeros

std::cout << "aVector.size() = "
<< aVector.size() << std:endl; // 5
br_stl::showSequence(aVector); Il 00000

/I insertion by means of the operatiohs++, =
std::insert_iterator<std::vector<int> >
aBeginInserter(aVector, aVector.begin());

inti =1;

while(i < 3) *aBegininserter++ = i++;

/I vector:1200000,size() isnow?7

/* In contrast to thdront_insert_iterator , the insert-position remains the
same, i.e. after inserting an element the position is not the beginning of the vector!

*
std::insert_iterator<vector<int> >
aMiddlelnserter(aVector, aVector.begin() +
aVector.size()/2);

while(i < 6) *aMiddlelnserter++ = i++;
/I vector:1203450000,size() isnow10

std::insert_iterator<vector<int> >
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anEndinserter(aVector, aVector.end());
while(i < 9) *anEndInserter++ = i++

std::cout << "aVector.size() = "
<< aVector.size() << std:endl; // 13
br_stl::showSequence(aVector); 1 1203450000678

}

Here, the insert iterator is used to insert elements at the beginning, in the middle,
tip and at the end. It should be noted that an insert iterator invalidates references to the

container when, for reasons of space, the container is moved to a different memory
location! Applied to the above example, this means that the definitions of the insert
iteratorscannotbe concentrated at the top shortly aftesiin() at one point: the
begin() andend() iterators and the sizsize() would be invalid for the second
and third iterators immediately after execution of the first one.

The copyadd() -example at the end of the sectiback_insert_iterator
also works in a similar way with the functiad::inserter(c,p) .pisanitera-
tor into containec.



Abstract data types

4.1

Summary:Abstract data types and the implicit data types used for their realization
have already been generally discussed in Secti@nThis chapter first deals with
the abstract data typestack , queue , and priority_queue which are provided

as template classes by the STL. Subsequently, the sorted associative costainers
map, multiset , andmultimap are considered.

Atemplate class of the kind presented here is also calbethtainer adaptobecause
it adapts an interface. This means that adaptors insert an interface level with changed
functionality between the user and the implicit data types. Thus, when you use a
stack object, you work via stack methods with the underlying container which can,
for example, be a vector.

The container used as an implicit data type is contained as an object in the class of
an abstract data type (aggregation). The abstract data type makes use of the methods
of the container. This principle is callettlegation

Stack

A stack is a container which allows insertion, retrieving, and deletion only at one
end. Objects inserted first are removed last. As an implicit data type, all sequential
container classes are allowed which support the operatik$) , push_back() ,
andpop_back() , as shown in the following excerpt:

namespace std {
template <class T,
class Container = deque<T> > 1 default
class stack {
public:

typedef typename Container::value_type value_type;

typedef typename Container::size_type size_type;

typedef typename Container container_type;

protected:
Container c;
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public:
explicit stack(const Container& = Container());
bool empty() const { return c.empty();}
size_type size() const { return c.size(); }
value_type& top() { return c.back(); }

const value_type& top() const { return c.back(); }

void push(const value_type& x) { c.push_back(x); }

void pop() { c.pop_back(); }
h

template <class T, class Container>
bool operator==(const stack<T,Container>& x,
const stack<T,Container>& y) {
return x.c == y.c;

}

template <class T, class Container>
bool operator<(const stack<T,Container>& x,
const stack<T,Container>& y) {
return x.c < Yy.c;

}

There are also the relational operatbrs <= etc. In particular, you can also
choosevector orlist instead of the standard valdeque . Thus, astack<int,
vector<int> > is a stack forint values implemented by means of a vector. An
example of the application of stacks follows in Sectiba

4.2 Queue

A queue allows you to insert objects at one end and to remove them from the opposite
end. The objects at both ends of the queue can be read without being removed.
Bothlist anddeque are suitable data types for implementation. The ctassie
provides the following interface:

template<class T, class Container = deque<T> >
class queue {
public:
explicit queue(const Container& = Container());

typedef typename Container::value_type value_type;
typedef typename Container::size_type size_type;
typedef Container container_type;

bool empty() const;
size_type size() const;
value_type& front(); 1 read value in front

const value_type& front() const; // read value in front
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value_type& back(); I read value at end

const value_type& back() const; // read value at end

void push(const value_type& x); /I append

void pop(); 1 delete first element
/I private/protected parts omitted

h

Of course, the underlying implementation is very similar to that of the stack. The
operators== and< exist as well.queue::value_type andqueue::size_type
are both derived from the typadque orlist ) used for the container. The following
short program is intended to show the practical application of queue and stack as
simply as possible. More complicated problems will follow later.

/I k4/div_adt.cpp
#include<stack>
#include<queue>
#include<deque>
#include<list>
#include<vector>
#include<iostream>

int main() {
std::queue<int, std:list<int> > aQueue;
int numbers[] = {1, 5, 6, 0, 9, 1, 8, 7, 2};
const int count = sizeof(numbers)/sizeof(int);

std::cout << "Put numbers into the queue:" << std:endl;
for(int i = 0; i < count; ++i) {
std::cout.width(6); std::cout << numbersi];
aQueue.push(numbersli]);

}

std::stack<int> aStack;
std::cout << "\n\n Read numbers from the queue (same
"order)\n and put them into the stack:"
<< std::endl;

while(faQueue.empty()) {

int Z = aQueue.front(); // read value
std::cout.width(6); std::cout << Z;
aQueue.pop(); I delete value
aStack.push(2);

}

/I ... (to be continued)

This little program puts a sequencef numbers into a queue, reads them back
out, and puts them on a stack. The stack is built witleque (default), whereas the
gueue uses a listigt ).
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4.3 Priority queue

A priority queue always returns the element with the highest priority. The priority
criterion must be specified when creating the queue. In the simplest case, it is the
greatest (or smallest) number in the queue. The criterion is characterized by a class
of suitable function objects for comparison (see Secii@n3.

In a priority queue you could, for example, store pairs consisting of references
to print jobs and associated priorities. For simplicity, omlty elements are used
in the example. The continuation of the program of the previous section shows the
application, in which the priority queue internally uses a vector and employs the
standard comparison typeeater

/I continued from Sectiod.2

std::priority_queue<int, std::vector<int>,

std::greater<int> > aPrioQ;
/I greater  : small elements first (= high priority)
/l'less :large elements first

std::cout << "\n\n Read numbers from the stack "
"(reverse order)\n"
" and put them into the priority queue:"
<< std:endl;

while(laStack.empty()) {

int Z = aStack.top(); 1 read value
std::cout.width(6); std::cout << Z; // display
aStack.pop(); 1l delete value

aPrioQ.push(2);
}

std::cout << "\n\n Read numbers from the priority "
" queue (sorted order!)" << std::endl;

while(laPrioQ.empty()) {

int Z = aPrioQ.top(); I read value
std::cout.width(6); std::cout << Z; // display
aPrioQ.pop(); 1l delete value

}

Because of the priority queue’s internal representation as a binary heap for effi-
ciency reasons (see Sectibry), only implicit data types with random access iter-
ators are suited, for examplieque andvector . priority_queue provides the
following interfaces, wher€ontainer andCompare denote the data types for the
implicit container and the comparison type:

template<class T, class Container = vector<T>,
class Compare = less<Container::value_type> >
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class priority_queue {
public:
typedef typename Container::value_type value_type;
typedef typename Container::size_type size_type;
typedef Container container_type;

bool empty() const;
size_type size() const;
const value_type& top() const;
void push(const value_type& X);
void pop();

The meaning of the above methods corresponds to theadad andqueue ; the
constructor, however, looks slightly different:

explicit priority_queue(const Compare& x = Compare(),
const Container& = Container());

The constructor requires a Compare object. If none is passed, an object generated
by the default constructor of the Compare class is passed. In the sample program
above, this igreater<int>()

priority _queue(Inputlterator first, Inputlterator last,
const Compare& x = Compare(),
const Container& = Container());

This constructor takes input iterators as the argument, in order to create a priority
gueue for a large range in one go. This is more efficient than a seriasif)
operations. In our sample program on page a further priority queue could be
created by means of the instruction

priority _queue<int, vector<int>, greater<int> >
anOtherPrioQ(numbers, numbers+count);

and at the same time be initialized with the whole number array. The name of the
arraynumbers is to be taken as a constant pointer, as is usual in C++.

Operators== and< do not exist because the comparison does not seem reason-
able and would be expensive in terms of run time behavior. In Setfidha priority
gueue is used to accelerate sorting processes on sequential files.

Sorted associative containers

An associative container allows fast access to data by means of a key which need not
coincide with the data. For example, the name and address of an employee could be
accessed via a personnel number used as a key. In sets and multisets, the data itself is
used as a key, whereas in maps and multimaps, key and data are different. The STL
provides four types of associative containers:

e set : The keys coincide with the data. There are no elements with the same key in
the set, that is, a key occurs either once or it does not occur at all.
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e multiset : The keys coincide with the data. There may be identical keys (ele-
ments) in the set, that is, a key can occur not at all, once, or any number of times.

e map. The keys do not coincide with the data. For example, the key could be a
number (personnel number) by means of which the data (address, salary, ...) can
be accessed. Keys can be any kind of objects. In a dictionary, for example, the
key could be an English word which is used to determine a foreign language word
(the data)map maps a set of keys to a set of associated data. The elements of
a map container are pairs of keys and data. They describe a binary relation, that
is, a relation between elements of two sets. The set of possible keys is called the
‘definition range’ of the map, the set of associated data is called the ‘value range.’
The map type is characterized by a unique map, because one key is associated
with exactlyonedatum. There are no identical keys, that is, a key either does not
occur at all or occurs only once.

e multimap : A multimap object has the properties described umaas, with one
exception: there may be identical keys. This means that a key can occur not at all,
once or any number of times. Unambiguousness is therefore no longer given.

The STL containers store the kegsrted although this is not required by the
actual task described in the above points. This is just an implementation detail that
allows you to store these containers in a very compact way as balanced binary trees
(red-black trees). Because of the sorting, access to the elements is very fast and the
tree grows only by the strictly required amount. An alternative, namely hashing,
requires an initial assignment of memory, but is even faster in accessing elements
(an average oD (1) with sufficient space instead 6f(log N)).

This alternative was not incorporated into the STL, since after a certain date
all major modifications or extensions were no longer accepted in order not to jeop-
ardize the time scale for standardization of the programming language and its li-
brary. Because of their efficiency, hashed associative containers will be described in
Chapter7.

Set

A set is a collection of distinguishable objects with common properties-
{0,1,2,3,...}, for example, denotes the set of natural numbers. Since the elements
are distinguishable, there can be no two identical elements in one set. All sets used
in computer programs are finite.

The classet supports mapping of sets in the computer. Although the elements
of a set in the mathematical sense are not subject to any order, they are nevertheless
internally represented in ordered form to facilitate access. The ordering criterion is
specified at the creation of a set. If it is not specifiess<T> is used by default.

For sets, the STL provides the class tempkxe. With regard to the typical
operations with sets, such as intersection and usignjs subject to several restric-
tions which, however, are remedied by the extensions described in Chapter
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In addition to the data types specified in TaBlé and the methods in Table
3.2 and SectiorB8.2.], a classset<Key, Compare> provides the public interface
described in Tableg.1to 4.3 Here,Key is the type of those elements that also
have the function of keys, artbmpare is the type of the comparison object. In this
casekey_compare andvalue_compare are identical and are included only for
completeness. The difference occurs only later in Seetidr8in themap class.

Data type Meaning

key_type Key

value_type Key

key_compare Compare. Standardtess<Key>
value_compare Compare. Standardtess<Key>

Table 4.1: Set data types.

Constructor Meaning

set() Default constructor: creates an empty container, with
Compare() used as comparison object.

set(c) Constructor: creates an empty container, wittsed as comj
parison object.

set(i, j, c) Constructor: creates an empty container, into which subse-

quently the elements of the iterator rangej) are in-
serted by means of the comparison objecfThe cost is
N log N with N as the number of inserted elements.

set(i, j) Asset(i, j, c) , but withCompare() as comparison obt
ject.

Table 4.2: Set constructors.

The right-hand column of Tablé.3 indicates the complexity, wher® refers
to the number of inserted, deleted, or counted elemé&ntstands for the current
size of the container returned kyjze() . The meaning of some methods can
only be fully understood in connection with multisets (see below). For example,
equal_range() , which for aset objecta is equivalent to the calhake_pair(
a.lower_bound(k), a.upper_bound(k)) , supplies only a pair of directly con-
secutive iterators when applied taet (if k exists).

Thecount() method can yield only 0 or 1. Itis included only for compatibility
with multisets (ultiset ). All methods that return an iterator or a pair of iterators
return constant iterators for constant sets. Methods for constant sets are not specially
listed in Table4.3.

The following example shows the application of a set of tgpe. More com-
plex operations, such as union and intersection will be discussed in SBdiiand
Chapter6.
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Return type method

Meaning

Complexity

key compare
key_comp()

value_compare
value_comp()

pair<iterator,bool>
insert(t)

iterator insert(p,
t)

void insert(i,j)

size_type erase(k)

void erase(q)
void erase(p, Q)

void clear()
iterator find(k)

size_type count(k)

iterator
lower_bound(k)

iterator
upper_bound(k)

pair<iterator,
iterator>
equal_range(k)

Returns a copy of the comparisg
object used for the construction ¢
theset .

As key_comp()
map).

Inserts the element, provided that
an element with the correspon
ing key does not yet exist. Th
bool component indicates whethg
the insertion has taken place; tt
iterator ~ component points to the
inserted element or to the eleme
with the same key as.

As insert(t) , with the iteratorp
being a hint as to where the sear
for inserting should begin. The re
turned iterator points to the inserte
element or the element with the san
key ast .

Inserts the elements of the iterat|
rangeli, j)

Deletes all elements with a key equ
tok. The number of deleted elemen
is returned.

Deletes the element pointed to by t
iteratorq.

Deletes all elements in the iterat
rangefp, q)

Deletes all elements.

Returns an iterator to an eleme
with the keyk, provided it exists.
Otherwisegnd() is returned.
Returns the number of elements wi
keyk.
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Table 4.3: Set methods.
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/I kd/setm.cpp Example for sets
#include<set>
#include<showseq.h>

int main() {
std::set<int> Set; // comparison objectess<int>()
for(int i = 0; i < 10; ++i) Set.insert(i);
for(int i = 0; i < 10; ++i) Set.insert(i); // no effect
br_stl::showSequence(Set); 1 0123456789

[* The display shows that the elements of the set really occur exactly once. In the next
part of the program, elements are deleted. In the first variation, first the element is
sought in order to delete it with the found iterator. In the second variation, deletion
is carried out via the specified key.

*/

std::cout << "Deletion by iterator\n"

"Delete which element? (0..9)" ;

int i;

std::cin >> i

std::set<int>::const_iterator iter = Set.find(i);

ifiter == Set.end())
std::cout << i << " not foundh\n";
else {
std::cout << "The element " << i 1 1
<< " exists" << Set.count(i)
<< " times." << std::endl;

Set.erase(iter);

std::cout << i << " deleted\n";

std::cout << "The element " << i 1l 0
<< " exists" << Set.count(i)
<< " times." << std:endl;

}

br_stl::showSequence(Set);

/* Thecount() method yields either 0 or 1. Thus, it is an indicator as to whether an
element is present in the set.
*/
std::cout << "Deletion by value\n"
"Delete which element? (0..9)" ;

std::cin >> i;
int Count = Set.erase(i);
if(Count == 0)

std::cout << i << " not found\n";
br_stl::showSequence(Set);
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4.4.2

4.4.3

[* Afurther setNumberSet is not initialized with a loop, but by specifying the range
to be inserted in the constructor. Suitable iteratorsifibr values are pointers of
int* type. The name of a C array can be interpreted as a constant pointer to the
beginning of the array. When the number of array elements is added to this pointer,
the result is a pointer that points to the position after the last array element. Both
pointers can be used as iterators for initialization of a set:

*/

std::cout << "call constructor with iterator range\n”;

/I 2 and 1 twice!
int Array[] = { 1, 2, 2, 3, 4, 9, 13, 1, 0, 5}
Count = sizeof(Array)/sizeof(Array[0]);

std::set<int> NumberSet(Array, Array + Count);
br_stl::showSequence(NumberSet); Il 012345913

In this example it can also be seen that the occurring elements are displayed only
once although duplicates exist in the original array.

Multiset

A multiset behaves like a set with the exception that not just one, but arbitrarily many
identical elements may be present. Taflé showsinsert() as the only method
which behaves differently from its counterpart in the set class and has a different
return type.

Return type method Meaning Complexity

iterator insert(t) Inserts the element independently| log G
of whether an element with the
same key already exists. The iterator
points to the newly inserted element.

Table 4.4: Multiset: difference from set.

Map

Exactly like aset , amapis an associative container, in which, however, unsiée,

keys and associated data are different. Here, the difference bekeypammpare
andvalue_compare mentioned on pageéb5 takes effect. In the declaration of a set
container, the types of key and possibly comparison objects must be specified; in
map, the data type is needed as well:

map<int, string, greater<int> > aMap;
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The definition is a mapping aht numbers ontostring  objects, with the
numbers internally sorted in descending order. As with, sorting is not a prop-
erty of the map, but of internal storage. The type of the comparison object can
be left out:map<int, string> aMap is then the same asap<int, string,
less<int> > aMap

The elements of a map container are pairs: the typae_type is identical
to key type in set or multiset , whereasmap::value_type is equivalent to
pair< Key, T> , with Key being the type of key and the type of data.

The map class essentially provides constructors with the same parameters and
methods with the same names and parameters asethelass. The meaning is
equivalent; it is sufficient to remember that pairs are stored instead of single values.
There are only two exceptions. The method

value_compare value_comp();

differs in its meaning from the one ket . It returns a function object which can

be used for comparison of objects of tyysue type (that is, pairs). This func-

tion object compares two pairs on the basis of their keys and the comparison object
used for the construction of theap. The classvalue_compare is declared inside

the classmap. For example, let us assume two pairs and a map with the following
definitions:

pair<int, string> p(9921, "algorithms"),
q(2726, "data structures");

Now, if there is a mapwhich during construction was connected to the comparison
objectCKfor the comparison of keys, then the call

bool x = M.value_comp()(p,q);
is identical to
bool x = CK(p.first, g.first);

that is, the comparison of the keys storediist . The second exception is the
index operator provided imap, which also allows you to access the data via the key
as an index. The key must not necessarily be a number;

/lint  key
cout << AddressMapl6]; I output of a name

/I string key
cout << DictionaryMap["hello"]; // ‘Hallo’

If during access the key does not yet exist, it is included into the map, insert-
ing an object generated with the default constructor in place of the data! Therefore,
before reading with the index operator, check whether the required element € tip 's.
Otherwise, thenap will inadvertently be filled with objects generated by the default
constructor.

In the following example, some names are associated personnel numbers of the
long type. These numbers are so big that it would not make sense to employ them
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as an index of an array. After entering a personnel number, the program outputs the
corresponding name.

In order to make the program more readable, the data type for mapping hames to
numbers and the data type for a value pair are renamed by megpsdasf

/I k4/mapl.cppExample for map
#include<map>
#include<string>
#include<iostream>

using namespace std;

/I two typedefs for abbreviations

/I comparison objectess<long>()

typedef std::map<long, std::string> MapType;
typedef MapType::value_type ValuePair;

int main() {
MapType Map;

Map.insert(ValuePair(836361136, "Andrew"));
Map.insert(ValuePair(274635328, "Berni"));
Map.insert(ValuePair(260736622, "John"));
Map.insert(ValuePair(720002287, "Karen"));
Map.insert(ValuePair(138373498, "Thomas"));
Map.insert(ValuePair(135353630, "William™));

/I insertion of Xaviera is not executed, becausekiyalready exists.
Map.insert(ValuePair(720002287, "Xaviera"));

/* Owing to the underlying implementation, the output of the names is sorted by
numbers:

*/

std::cout << "Qutput:\n";

MapType::const_iterator iter = aMap.begin();

while(iter = Map.end()) {

std::cout << (*iter).first << '’ 1 number
<< (*iter).second I name
<< std::endl;
++iter;

}

std::cout << "Output of the name after entering”
" the number\n”
<< "Number: "
long Number;
std::cin >> Number;
iter = Map.find(Number); I O(log N), see text
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if(iter 1= Map.end())

std::cout << (*iter).second 1 O(1)
<< '
<< Map[Number] /I O(log N)
<< std:: endl;

elsestd:: cout << "Not found!" << std::endl;

}

The name is sought by way of the number. This process is of complexity
O(log N), whereN is the number of entries. If the entry is found, it can be output
directly by dereferencing the iterator.

Another way to access a map element is via the index operator. Here, it can be
clearly seen that the index can be an arbitrarily large number which has nothing to
do with the number of actual entries — this is completely different from the usual
array.

The accessap[Number] has the same complexity &sd() , and we could
do withoutfind()  in the above example if we could be sure that only numbers that
actually exist are entered.

If the index operator is called with a non-existing number, it stores this number in
the map and uses the default constructor for generating the data (see the exercises).
This ensures that the index operator never returns an invalid reference. In our case, an
empty string would be entered. In order to prevent tind()  is called beforehand.

Exercises

4.1 Foramapnm data of typel and a ke, the callm[k] is semantically equivalent
to

(*((m.insert(make_pair(k, T()))).first)).second

because an entry is made for a non-existing key. Analyze the expression, in both the
case when the keay is contained irm and when it is not.

4.2 Is there a difference ifalue_type is written instead ofmake_pair in the
previous exercise?

Multimap

multimap differs from map in the same way asultiset  differs from set :
multiple entries of elements with identical keys are possible, for example, the
name Xaviera in the sample program of the previous section. Correspondingly, the
functioninsert(value_type) does not return a pajrair<iterator, bool> ,

but only an iterator which points to the newly inserted element (compareseatith
multiset ).
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Standard algorithms

5.1

Summary:Previous chapters describe the basic effects of algorithms on containers.
This chapter is a catalog or reference for algorithms.

Note: A thorough reading of two or three sections of this chapter to learn the struc-
ture and a quick leafing through the rest will be sufficient to give rapid access to a
suitable algorithm with sample applications. Only in Part Il does the combination

of algorithms and containers reveal new aspects.

Without especially mentioning it, all the algorithms presented in this chapter are
in namespacstd . They are completely separated from the special implementation
of the containers on which they work. They only know iterators which can be used to
access the data structures in containers. The iterators must satisfy only a few criteria
(see Chaptep). For this reason, iterators can be both complex objects and simple
pointers. Some algorithms bear the same names as container methods. However,
because of the different way in which they are used, no confusion will occur.

The complete separation can, however, also have disadvantages: a very generic
find()  algorithm will have to search a container from beginning to end. The com-
plexity is O(N), whereN is the number of elements of the container. If the con-
tainer structure is knowriind()  can be much faster. For example, the complexity
of search in a sorted set container is o6lflog V). Therefore, there are several al-
gorithms which under the same name appear both as a generic algorithm and as a
member function of a container. Where the situation allows, the made-to-measure
member function is to be preferred.

Copying algorithms

For reasons of speed, some algorithms exist in two variations: the first works directly
on the container, the second copies the container. The second variation is always
sensible when a copy process is required, for example to keep the original data, and
when, with regard to complexity, the algorithm itself is no more expensive than the
copy process. Let us look at the different cases:

1. A copyBis to be made of contain@; removing all elements from the copy which
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satisfy a given condition, for example all clients with less than 50,000 dollars of
turnover. The following alternatives exist:

e copyAto B and remove all unwanted elements fr@ror
e copy all elements from to B, but only if they satisfy a given criterion.

Both alternatives are of complexity(n). It is, however, obvious that the sec-
ond alternative is faster and therefore a copying variation of the algorithm makes
sense.

2. A sortedcopyBiis to be generated of containgrHere too, two possibilities exist:

e copyAtoBand sort, or
o take all elements of and insert them sorted inf

The second possibility is no better than the first one. The sorting process is at
least of complexityO(N log V), thus definitely greater than copyin@(V)).

Thus, a variation of a sorting algorithm which at the same time copies is simply

superfluous. If a copy is required, the first variation can be chosen without any
loss of speed.

In the following sections, the copying variations are mentioned, provided they
exist. All algorithms which as well as their proper task also generate a copy of a
container bear the suffixcopy in their names.

5.2 Algorithms with predicates

‘Predicate’ means a function object (see Secficgh3 which is passed to an algo-

rithm and returns a value of tyfmol when it is applied to a dereferenced iterator.

The dereferenced iterator is simply a reference to an object stored in the container.
The function object is to determine whether this object has a given property.

Only if this question is answered withue is the algorithm applied to this object.

A general scheme for this is:

template <class Inputlterator, class Predicate>
void algorithm(Inputlterator first,
Inputlterator last,
Predicate pred) {
while (first I= last) {

if(pred(*first)) { I does predicate apply?
show_it(*first); 1 ... or another function

}

++first;

}
ThePredicate class must not alter an object. An example is given on [g&ge



5.2.1

5.3

53.1

NONMUTATING SEQUENCE OPERATIONS 87

Some algorithms that use predicates have a suiffixin their names, others do
not. A feature common to all of them is that they expect a predicate in the parameter
list.

Algorithms with binary predicates

A binary predicate requires two arguments. This allows you to formulate a condition
for two objects in the container, for example a comparison. The algorithm might
contain the following kernel:

if(binary_pred(*first, *second)) { 1 does the predicate apply?
do_something_with(*first, *second);
I

In this sense, you can also use objects of the classes of Tablas binary
predicates. The second parameter of a binary predicate, however, need not be an
iterator:

template <class Inputlterator,
class binaryPredicate,
class T>
void another_algorithm(Inputlterator first,
Inputlterator last,
binaryPredicate bpred,
T aValue)

{ while (first = last) {
if(bpred(*first, aValue)) {
show_it(*first);
}

++first;

Nonmutating sequence operations

The algorithms described in this section work on sequences, but do not alter them.
With one exception, all algorithms are of complexi?y V'), whereN is the number
of elements in the sequence. The exception is#aech algorithm.

for_each

The for_each algorithm causes a function to be executed on each element of a
container. The definition is so short and simple that it is shown in its entirety:

template <class Inputlterator, class Function>
Function for_each(Inputlterator first,
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Inputlterator last, Function f) {

while(first = last)
f(*first++);
return f;

}

The returned objedt is mostly ignored. However, the returned object can trans-
port data outside the function body, e.g. the maximum value of the iterated sequence.
In the following program, the function is the display ofian value which, together
with thefor_each algorithm, writes a vector on the standard output.

The classFunction in the above definition is a placeholder which could as
well be the type of a function object. Thecrement  class for incrementing ant
value is employed in this way. Of course, althodgheach itself is a nonmutating
algorithm, values of the sequence can be changed by the function or function object.
Both possibilities are shown below.

#include<algorithm>
#include<vector>
#include<iostream>
using namespace std;

void display(int x) { 1 nonmutating function
cout << x << ' %
}
class Increment { 1 functor class
public:
Increment(int i = 1) : howmuch(i) {}
void operator()(int& x) { // mutating operator
X += howmuch;
}
private:
int howmuch;
2
int main() {
vector<int> v(5); I vector of 5 zeros
/v is not changed:
for_each(v.begin(), v.end(), display); 1 00000

cout << endl;

/I with Increment constructor

/l'v is changed by the functanotby for_each

for_each(v.begin(), v.end(), Increment(2));

for_each(v.begin(), v.end(), display); // 22222
cout << endl;

/I with Increment object
Increment anlncrement(7);



NONMUTATING SEQUENCE OPERATIONS 89

/l'v is changed by the functanotby for_each

for_each(v.begin(), v.end(), anincrement);

for_each(v.begin(), v.end(), display); // 99999
}

Inthe example, the return valuefof_each() , the function object, is not used..

5.3.2 find and find_if

There are two kinds dfnd()  algorithm: with and without a compulsory predicate
(asfind_if() ). It seeks the position in a container, let us cadl,iat which a given
element can be found. The result is an iterator which either points to the position
found or is equal t&.end() . The prototypes are:

template <class Inputlterator, class T>

Inputlterator find(Inputlterator first,
Inputlterator last,
const T& value);

template <class Inputlterator, class Predicate>

Inputlterator find_if(Inputlterator first,
Inputlterator last,
Predicate pred);

The way thefind()  algorithm functions is extensively discussed in Section
1.3.4 with corresponding examples on padgeff. Therefore, we will look at only
one example fofind_if() , thatis, afind()  with the predicate. In a sequence of
numbers, the first odd number is sought, with the criterion ‘odd’ checked by means
of a function object.

/I k5/find_if.cpp
#include<algorithm>
#include<vector>
#include<iostream>

void display(int x) { std:cout << x << ' ';}

class odd {
public:
/I odd argument yieldsue
bool operator()(int x) { return x % 2;}
2
int main() {
std::vector<int> v(8);

for(size_t i = 0; i < v.size(); ++i)
v[i] = 2%; 1! all even

]
v[5] = 99; 1 an odd number
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/I display
std::for_each(v.begin(), v.end(), display);
std::cout << std::endl;

/I search for odd number
std::vector<int>::const_iterator iter
= std:find_if(v.begin(), v.end(), odd());

if(iter '= v.end()) {
std::cout << "The first odd number ("

<< *jter
<< ") was found at position "
<< (iter - v.begin())
<< "" << std::endl;

}

else std::cout << "No odd number found." << std::endl;

}
Alternativelybind2nd()  can be used, if the headeunctional> is included:

#include<functional> // don't forget
/I look for odd number
std::vector<int>::const_iterator iter
= std::find_if(v.begin(), v.end(),
std::bind2nd(std::modulus<int>(),2));

5.3.3 find_end

This algorithm finds a subsequence inside a sequence. Neither this nor the follow-
ing algorithm (ind_first_of() ) is contained in the original version of the STL

( ) %;)but both have been added to
the C++ standard. The prototypes are:

template<class Forwardlteratorl, classForwardlterator2>

Forwardlteratorl find_end(Forwardlteratorl firstl,
Forwardlteratorl lastl,
Forwardlterator2 first2,
Forwardlterator2 last2);

template<class Forwardlteratorl, class Forwardlterator2,
class BinaryPredicate>
Forwardlteratorl find_end(Forwardlteratorl firstl,
Forwardlteratorl lastl,
Forwardlterator2 first2,
Forwardlterator2 last2,
BinaryPredicate pred);

The interval [firstl, lastl) is the range to be searched; the interval
[first2, last2) describes the sequence to be sought. The return value is the
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last iterator in the search range that points to the beginning of the subsequence. If
the subsequence is not found, the algorithm retlasts . If the returned iterator is
named ,

*(i+n) == *(first2+n)
or

pred(*(i+n), *(first2+n)) == true

according to the prototype, apply for allin the range O tolést2-first2 ). The
complexity isO(Ns x (N1 — N3)), whenN; and N, are the lengths of the search
range and the subsequence to be sought. Example:

/I k5/find_end.cppfind a subsequence within a sequence
#include<algorithm>

#include<vector>

#include<iostream>

using namespace std;

int main() {
vector<int> v(8);
vector<int> subsequencel(3);

/I initialize vector and subsquences

for(size_t i = 0; i < v.size(); ++i)
v[i] = 2%; 1 all even
subsequencel[0] = 4;
subsequencel[l] = 6;
subsequencel[2] = 8;

cout << "vector ";

for(size_t i = 0; i < v.size(); ++i)
cout << V[i] << " "

cout << endl;

/I search for subsequence 1

cout << "subsequencel ("

for(size_t i = 0; i < subsequencel.size(); ++i)
cout << subsequencel[i] << " ";

cout << ")" << endl;

vector<int>::const_iterator iter
= find_end(v.begin(), v.end(),

subsequencel.begin(), subsequencel.end());

if(iter = v.end()) {
cout << "is part of the vector. The first occurence"
" starts at position "
<< (iter - v.begin())
<< "" << endl
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else cout << "is not part of the vector." << endl;

5.3.4 find_first_of

The algorithm finds an element in a subsequence within a sequence. The prototypes
are:

template<class Forwardlteratorl, class Forwardlterator2>

Forwardlteratorl find_first_of(Forwardlteratorl firstl,
Forwardlteratorl lastl,
Forwardlterator2 first2,
Forwardlterator2 last2);

template<class Forwardlteratorl, class Forwardlterator2,
class BinaryPredicate>
Forwardlteratorl find_first_of(Forwardlteratorl firstl,
Forwardlteratorl lastl,
Forwardlterator2 first2,
Forwardlterator2 last2,
BinaryPredicate pred);

The interval(firstl, lastl) is the search range; the intenjéitst2,

last?) describes a range of elements to be sought. The return value is the first
iteratori in the search range which points to an element which is also present in the
second range. Assuming that an iteratgooints to the element in the second range,
then

*i == *j
or

pred(*i, *) == true

apply, according to the prototype. If no element of the first range is found in the
second range, the algorithm retudastl . The complexity iSO(N1 * N3), when
N; and N, are the range lengths. Example:

Il excerpt fromk5/find_first_of.cpp
/I search for element, which is also in subsequence
vector<int>::const_iterator iter
= find_first_of(v.begin(), v.end(),
subsequence.begin(), subsequence.end());

if(iter '= v.end()) {
cout << "Yes. Element " << *iter
<< " is present in both ranges. Its first "
"occurrence in the vector is position "
<< (iter - v.begin())
<< "" << endl

}

else cout << "No match." << endl;
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5.3.5 adjacent_find

Two identical, directly adjacent elements are found vaitiacent_find() . Here

too, two overloaded variations exist — one without and one with binary predicate.
The first variation compares the elements by means of the equality operatbie
second one uses the predicate. The prototypes are:

template <class Forwardlterator>
Forwardlterator adjacent_find(Forwardlterator first,
Forwardlterator last);

template <class Forwardlterator, class BinaryPredicate>
Forwardlterator adjacent_find(Forwardlterator first,
Forwardlterator last,
BinaryPredicate binary_pred);

The returned iterator points to the first of the two elements, provided that a cor-
responding pair is found. The first example shows how to find two identical adjacent
elements:

/I k5/adjacent_find.cpp
#include<algorithm>
#include<vector>
#include<iostream>
#include<showseq.h>

int main() {
std::vector<int> v(8);

for(size_t i = 0; i < v.size(); ++i)

v[i] = 2%; I even
v[5] = 99; 1l two identical adjacent elements
v[6] = 99;

br_stl::showSequence(v);

/I find identical neighbors
std::vector<int>::const_iterator iter
= std::adjacent_find(v.begin(), v.end());

if(iter = v.end()) {
std::cout << "The first identical adjacent numbers ("
<< *ter
<< ") were found at position
<< (iter - v.begin())

<< "" << std::endl;
}
else
std::cout << "No identical adjacent numbers found."
<< std::endl;
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5.3.6

The second example shows the application of a completely different — in the
end arbitrary — criterion. A sequence is checked to see whether the second of two
adjacent elements is twice as large as the first one:

/I k5/adjacent_find_1.find.cpp
#include<algorithm>
#include<vector>
#include<iostream>
#include<showseq.h>

class doubled {
public:
bool operator()(int a, int b) { return (b == 2*a);}
h

int main() {
std::vector<int> v(8);

for(size_t i = 0; i < v.size(); ++i)

V[i] = i*;
v[e] = 2 * v[5]; " twice as large successor
br_stl::showSequence(v);

/I search for twice as large successor
std::vector<int>::const_iterator iter
= std::adjacent_find(v.begin(), v.end(), doubled());

if(iter '= v.end()) {
std::cout << "The first number ("
<< *ter
<< ") with a twice as large successor"
" was found at position "
<< (iter - v.begin())
<< "" << std:endl;
}
else
std::cout << "No number with twice as large "
"successor found." << std::endl;

}

The technique of employing a function object reveals itself as very useful and
powerful. In operator()() , arbitrarily complex conditions can be formulated
without having to change theain() program.

count and count_if

These algorithms counts the number of the elements which are equal to a given value
value or the number of the elements which satisfy a given predicate. The prototypes
are



NONMUTATING SEQUENCE OPERATIONS 95

template <class Inputlterator, class T>

iterator_traits<Inputlterator>::difference_type

count(Inputlterator first, Inputlterator last,
const T& value);

template <class Inputlterator, class Predicate>

iterator_traits<Inputlterator>::difference_type

count_if(Inputlterator first, Inputlterator last,
Predicate pred);

The program fragment shows the application, with reference to the veabr
the previous examples.

std::cout << "There exist "
<< std::count(v.begin(), v.end(), 99)
<< " elements with the value 99." << std::endl;

At its construction, the function object of typg/Comparison receives the value
with which the comparison is to be made. Hexaynt_if() enters into the action:

/] #include... and so on

class myComparison {
public:
myComparison(int i): withwhat(i) {}
bool operator()(int x) { return x == withwhat;}
private:
int withwhat;

h

int main() {
std::vector<int> v(100);
/I initialize v here (omitted)
std::cout << "There exist "
<< count_if(v.begin(), v.end(), myComparison(99))
<< " elements with the value 99."
<< std::endl;

An alternative is

std::count_if(v.begin(), v.end(),
std::bind2nd(std::equal_to<int>(),99));

5.3.7 mismatch

mismatch()  checks two containers for matching contents, with one variation using
a binary predicate. The prototypes are:
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template <class Inputlteratorl, class Inputlterator2>

pair<inputlteratorl, Inputlterator2> mismatch(
Inputlteratorl firstl,
Inputlteratorl last1,
Inputlterator2 first2);

template <class Inputlteratorl, class Inputlterator2,
class BinaryPredicate>
pair<inputlteratorl, Inputlterator2> mismatch(
Inputlteratorl firstl,
Inputlteratorl last1,
Inputlterator2 first2,
BinaryPredicate binary_pred);

The algorithm returns a pair of iterators which point to the first position of mis-
match in the corresponding containers. If both containers match, the first iterator of
the returned pair is equal tastl . The following example shows that the containers
do not have to be of the same type: herggglor and aset are compared. Because
of the sorted storage in thset , the vector must be sorted as well:

/I k5/mismatch.cpp
#include<algorithm>
#include<vector>
#include<set>
#include<showseq.h>

int main() {
std::vector<int> v(8);

for(size_t i = 0; i < v.size(); ++i)

v[i] = 2%; I sorted sequence
std::set<int> s(v.begin(), v.end()); // initialize set with v
v[3] = 7, 1 insert mismatch
br_stl::showSequence(v); 1l display

br_stl::showSequence(s);

/I comparison for match with iterator pair ‘'where’
std::pair<std::vector<int>::iterator,
std::set<int>::iterator>
where = std::mismatch(v.begin(), v.end(), s.begin());

if(where.first == v.end())
std::cout << "Match found." << std::endl;
else
std::cout << "The first mismatch ("
<< *where.first << " I=
<< *where.second
<< ") was found at position
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<< (where.first - v.begin())

<< "" << std:endl;
}
In theset , no index-like position is defined; therefore an expression of the kind
(where.second - s.begin()) is invalid. It is true thatvhere.second points

to the position of the mismatch i, but the arithmetic is not permitted. If you
really need the relative number with reference to the first elemest you can
usedistance()

The second example checks character sequences, with the siislgch()
finding the first mismatch, whereassmatch()  with binary predicate ignores mis-
matches in upper case and lower case spelling.

/I k5/mismat_b.cpp
#include<algorithm>
#include<vector>
#include<iostream>
#include<cctype>

class myCharCompare { // tolerates upper/lower case spelling

public:
bool operator()(char x, char y) {
return tolower(x) == tolower(y);
}
2
int main() {

char Textl[] = "Algorithms and Data Structures";
/I text with two errors:
char Text2[]] = "Algorithms and data Struktures";

/I copy texts into vector (-1 because of null byte)
std::vector<char> vi1(Textl, Textl + sizeof(Textl)-1);
std::vector<char> v2(Text2, Text2 + sizeof(Text2)-1);

/I compare with iterator pair 'where’
std::pair<std::vector<char>::iterator,
std::vector<char>::iterator>
where = std::mismatch(v1.begin(),
vl.end(), v2.begin());

if(where.first = vl.end()) {
std::cout << Textl << std::endl
<< Text2 << std:endl;
std::cout.width(1 + where.first - v1.begin());
std::cout << "M first mismatch" << std::endl;

}

/I compare with predicate
where = std::mismatch(v1l.begin(), vl.end(), v2.begin(),
myCharCompare());
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if(where.first = vl.end()) {
std::cout << Textl << std::endl
<< Text2 << std:endl,
std::cout.width(1 + where.first - v1.begin());
std::cout << "M first mismatch at\n"
"tolerance of upper/lower case spelling”
<< std::endl;

}

The specification of output width in connection with theharacter is used to
mark the position visually on screen. A fixed font is assumed.

5.3.8 equal

equal() checks two containers for matching contents, with one variation using a
binary predicate. Unlikenismatch() , however, no position is indicated. As can be
seen from the return typmol , it checks only whether the containers match or not.
The prototypes are:

template <class Inputlteratorl, class Inputlterator2>
bool equal(lnputlteratorl firstl,

Inputlteratorl lastl,

Inputlterator2 first2);

template <class Inputlteratorl, class Inputlterator2,
class BinaryPredicate>
bool equal(lnputlteratorl firstl,
Inputlteratorl last1,
Inputlterator2 first2,
BinaryPredicate binary_pred);

When you comparequal()  with mismatch() , you will see a strong simi-
larity: depending on whethenismatch() yields a match or notequal() must
return the valuarue orfalse (see Exercises 5.1 and 5.2). An application within
the program of the previous example might look as follows:

if(std::equal(vl.begin(), vl.end(), v2.begin()))

std::cout << "equal character strings" << std::endl;
else

std::cout << "unequal character strings" << std::endl;

/I remember the negation which saves some writing effort in the program.
if(Istd::equal(v1.begin(), vl.end(), v2.begin(),
myCharCompare()))
std::cout << "un";
std::cout << "equal character strings at "
"tolerance of upper/lower case spelling "
<< std::endl;
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Exercises

5.1 What would the implementation @&fqual() look like, if it were to use the
mismatch() algorithm?

5.2 What would the implementation efjual() with a binary predicate look like,
if it were to usemismatch()  with a binary predicate?

5.3.9 search

Thesearch() algorithm searches a sequence of séd¢o see whether a second
sequence of siz&' is contained in it. In the worst case, the complexitieV G);

on average, however, the behavior is better. The return value is an iterator to the
position within the first sequence at which the second sequence starts, provided it is
contained in the first one. Otherwise, an iterator toltisel  position of the first
sequence is returned. The prototypes are:

template <class Forwardlteratorl, class Forwardlterator2>

Forwardlteratorl search(Forwardlteratorl firstl,
Forwardlteratorl lastl,
Forwardlterator2 first2,
Forwardlterator2 last2);

template <class Forwardlteratorl, class Forwardlterator2,
class BinaryPredicate>
Forwardlteratorl search(Forwardlteratorl firstl,
Forwardlteratorl lastl,
Forwardlterator2 first2,
Forwardlterator2 last2,
BinaryPredicate binary_pred);

In the example, a sequence of numbers is searched for, inside another sequence
of numbers. The binary predicate compares the absolute values of the numbers,
ignoring the signs.

/I k5/search.cpp
#include<algorithm>
#include<vector>
#include<iostream>
#include<cstdlib>
using namespace std;

class AbsIntCompare { // ignore signs
public:
bool operator()(int x, int y) {
return abs(x) == abs(y);
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h

int main() {

}

vector<int> v1(12);
for(size_t i = 0; i < vl.size(); ++i)
vi[i] = i; I 0123456789101112

vector<int> v2(4);
for(size_t i = 0; i < v2.size(); ++i)
V2[i] =i + 5 " 5678

/I search for substructus® in v1
vector<int>::const_iterator
where = search(vl.begin(), vl.end(),
v2.begin(), v2.end());

/I if the sequenc&2 does not begin with 5, but with a number10,
/I theelse branch of thaéf condition is executed.

if(where !'= vl.end()) {
cout << " v2 is contained in vl from position "
<< (where - vl.begin())
<< " onward." << endl;

}

else

cout << v2 is not contained in vl1."
<< endl;

/I put negative numbers int®
for(size_t i = 0; i < v2.size(); ++i)
v2[i] = (i + 5); /I -5-6-7-8

/I search for substructus® in v1, ignore signs

where = search(vl.begin(), vl.end(),
v2.begin(), v2.end(),
AbsIntCompare());

if(where !'= vl.end()) {
cout << " v2 is contained in vl from position "
<< (where - vl.begin())
<< " onward (signs are ignored)."
<< endl;
}
else
cout << " v2 is not contained in v1."
<< endl;

Here, with the changed criterion, it is found thatis contained irv1.
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5.3.10 search_n

Thesearch_n() algorithm searches a sequence for a sequence of equal values. The
prototypes are:

template <class Forwardlterator, class Size, class T>
Forwardlterator search_n(Forwardlterator first,
Forwardlterator last,
Size count,
const T& value);

template <class Forwardlterator, class Size, class T,
class BinaryPredicate>
Forwardlterator search_n(Forwardlterator first,
Forwardlterator last,
Size count,
const T& value,
BinaryPredicate binary_pred);

The first function returns the iterator to the start of the first sequence with at least
count values that are equal talue . If such a sequence is not found, the function
returnslast . The second function does not check for equality but evaluates the
binary predicate. In case of succesmary_pred(X, value) must hold for at
leastcount consecutive values.

5.4 Mutating sequence operations

If not specified otherwise, the complexity of all algorithms in this sectiof(i87),
whereN is the number of moved or altered elements of the sequence.

5.4.1 iota

This algorithm is part of several STL implementations, but not of the C++ stanc tip .
It is shown here, because it can from time to time be employed in practice.

lota is the ninth letter of the Greek alphabgt The corresponding English word
‘iota’ means ‘a very small quantity’ or ‘an infinitesimal amount.” However, the name
has not been chosen for this reason, but is taken from therator of the APL
programming language. As an ‘Index generator,’ the APL instructiorsupplies
a vector with an ascending sequence of the numbersrl The function itself is
rather simple, as can be seen from the definition:

/I includefiota.h
#ifndef IOTA_H
#define I0TA_H
namespace br_stl {

template <class Forwardlterator, class T>
void iota(Forwardlterator first, Forwardlterator last,
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T value) {
while(first = last)
*first++ = value++;
}

}
#endif

All elements in the intervdfirst, last) of a sequence are assigned a value,
with the value being increased by one at each iteration. The Tyfoe the value
can also be a pointer type, so that addresses are incremietd€d. is going to be
employed in an example in the next section. In the following text it is assumed that
iota is contained in an extra headdsta.h>

5.4.2 copy and copy_backward

The copy() algorithm copies the elements of a source range into the destina-
tion range; copying can start at the beginning or at the end of the ranges (with
copy_backward() ). If the destination range is not to be overwritten, but the copied
elements are to be inserted, an insert iterator is chosen as the output iterator, as
shown on pages5. Exceptionally, in order to make the functioning clearer, the
complete definitions are shown instead of the prototypes:

template <class Inputlterator, class Outputlterator>
Outputlterator copy(Inputlterator first,
Inputlterator last,
Outputlterator result) {
while (first != last) *result++ = *first++;
return result;

}

template <class Bidirectionallteratorl,
class Bidirectionallterator2>
Bidirectionallterator2 copy_backward(
Bidirectionallteratorl first,
Bidirectionallteratorl last,
Bidirectionallterator2 result) {
while (first != last) *--result = *--last;
return result;

Here too, as usual in the C++ Standard Librést,  does not denote the position
of the last element, but the position after the last element. As Figashows, three
cases must be considered:

1. The ranges are completely separated from each other. The ranges can lie in the
same or in different containengsult  points to the beginning of the destination
rangecopy() copies the source range starting witihst . The return value is
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1) 2) 3)
result — result — first -~ — —
\ \
\ \
dest. dest. : source:
first - — — first - — —
\ \
\ \ L _
| | | | last —
‘ source‘ ‘ source‘ dest.
\ \ \ \
\ \ \ \
L | L |
last — last — result —
Figure 5.1: Copying without and with range overlapping.
result + (last - first) , that is, the position after the last element of the

destination range.

2. The ranges overlap in such a way that the destination range begiosthe
source rangeesult  points to the beginning of the destination rangey()
copies the source range beginning wiilst . As with the first case, the posi-
tion after the last element of the destination range is returned.

3. The ranges overlap in such a way that the destination range begins somewhere
in the middleof the source range. In order not to destroy the data, copying must
start from the endresult  points to the position directly after thend of the
destination rangecopy_backward()  copies the source range by first copying
*(--last) to the position-result . Here,result - (last - first) is
returned, that is, the position of the last copied element in the destination range.

The behavior of the copying algorithms is undefined whesult  lies in the
interval [first, last) . The application otopy() andcopy_backward() is
shown in the following example:

/I k5/cpy.cpp
#include<algorithm>
#include<vector>
#include<iterator>
#include<showseq.h>
#include<iota.h>
using namespace std;



104 STANDARD ALGORITHMS

5.4.3

tip

int main() {
vector<int> v1(7), v2(7, 0); 1 7 zeros
br_stl::iota(vl.begin(), vi.end(),0); i result see next line
br_stl::showSequence(vl); I 0123456
br_stl::showSequence(v2); I 0000000

/* In the copy process froml to v2, the beginning of the destination range is
marked bw2.begin() . Copyvl tov2:
*/

copy(vl.begin(), vl.end(), v2.begin());
br_stl::showSequence(v2); 1 0123456

/* In order to show the variety of the iterator principle, the algoritbopy() is
used with a special iterator. This iterator is defined as an ostream iterator which
can displayint numbers on the standard output. Tdopy() algorithm has no
difficulties with this (in practice, it doesn't give a hoot!).

*/

/I copyvl tocout , separator

ostream_iterator<int> Output(cout, "*");

copy(vl.begin(), vl.end(), Output); 1 0% #2%3#4*5%6%*
cout << endl;

/* Now, a range insidel is copied to a different position which liéssidevl. The
range is chosen such that source and destination ranges overlap. The first four
numbers are copied, so that case (3) of Figufeapplies.

*/

/I overlapping ranges:
vector<int>:iterator last = vl.begin();

advance(last, 4); 1 4 steps forward
copy_backward(vl.begin(), last, vl.end());
copy(vl.begin(), vl.end(), Output); /i O 1250 [ #2%3%

copy _if

Algorithmcopy_if()  copies all elements of a source range into a destination range,
if a certain condition holds.

The algorithm isnot part of the C++ Standard Library. The reasons are not
quite clear because many other algorithms do have a variant with a predicate.
Probably the reason is that the same result can be achieved using the algorithm
remove_copy_if() from pagel 14, if the predicate is negated. However, it is also
very simple to write a standard conforming implementation, as can be seen below. In
the example, only values greater than 10 are copied from one container to another.

/I k5/copy_if.cpp
#include<iostream>
#include<vector>



MUTATING SEQUENCE OPERATIONS 105

#include<functional>
#include<showseq.h>
#include<iota.h>

template <class lteratorl, class lterator2, class Predicate>
Iterator2 copy_if(Iteratorl iter, lteratorl sourceEnd,
Iterator2 destination, Predicate Pred) {

while(iter != sourceEnd) {
if(Pred(*iter))
*destination++ = *iter;
++iter;
}
return destination;

}

int main() {
typedef std::vector<int> Container;
Container V(20);
br_stl::iota(V.begin(), V.end(), 1);
br_stl::showSequence(V);

Container C; I empty container

/I insert all elements 10 :

copy_if(V.begin(), V.end(),
std::back_inserter(C),
std::bind2nd(std::greater<int>(),10));

br_stl::showSequence(C);

Iterator destination must be an insert iterator because the destination con-
tainer is initially empty. If the destination container has enough room before the
algorithm startsC.begin()  could be the destination iterator.

5.4.4 swap, iter_swap, and swap_ranges

Theswap() algorithm exchanges elements of containers or containers themselves.
It occurs in three variations:

e swap() swaps two individual elements. The two elements can be in the same or
in different containers.

template <class T>
void swap(T& a, T& b);

e iter_swap() takes two iterators and swaps the associated elements. The two
iterators can belong to the same or to different containers.

template <class Forwardlteratorl, class Forwardlterator2>
void iter_swap(Forwardlteratorl a, Forwardlterator2 b);
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e swap_ranges() swaps two ranges.

template <class Forwardlteratorl, class Forwardlterator2>

Forwardlterator2 swap_ranges(Forwardlteratorl firstl,
Forwardlteratorl lastl,
Forwardlterator2 first2);

firstl  points to the beginning of the first rangastl to the position after

the last element of the first range. The beginning of the second range is given
by first2 . The number of elements to be swapped is given by the size of the

first range. The ranges can lie in the same container, but they must not overlap.
swap_ranges() returns an iterator to the end of the second range.

swap() is specialized for those container which provide a metheap() , i.e.
deque, list ,vector ,set ,map, multiset ,andmultimap . These methods are
very fast O(1)), because only management information is exchangeab()

calls a container method, as shown here for the swap function specialized for
vectors:

template<class T, class Allocator>
void swap(vector<T, Allocator>& a,
vector<T, Allocator>& b) {
a.swap(b);

}

The first three variations are employed in the next example where, for simplicity,

all movements take place in the same container —which, in general, is not necessarily
the case. At the end of each swapping action, the result is displayed on standard
output.

Il k5/swap.cpp
#include<algorithm>
#include<vector>
#include<showseq.h>
#include<iota.h>
using namespace std;

int main() {
vector<int> v(17);
br_stl::iota(v.begin(), v.end(), 10);
br_stl::showSequence(v);
Il 1011121314151617 18192021 2223242526

cout << "Swap elements v[3] and v[5]:\n";
swap(v[3], v[5]); I swap
br_stl::showSequence(v);

Il 1011121514 131617 18192021 2223242526

cout << "swap first and last elements"”
" via iterator:\n";
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vector<int>:iterator first = v.begin(),
last = v.end();
--last;

iter_swap(first, last); 1 swap
br_stl::showSequence(v);
Il 2611121514131617181920212223242510

int oneThird = v.size()/3;

cout << "swap about the first and last thirds
<< "(" << oneThird << " Positions):\n";

last = v.begin();

advance(last, oneThird); I end of first third
vector<int>:iterator target = v.end();

advance(target, -oneThird); 1 beginning of second third
swap_ranges(first, last, target); // swap

br_stl::showSequence(v);
/I 2223242510131617181920212611121514

5.4.5 transform

When the task is not only to copy something, but also to transform it at the same
time, thenrransform() is the right algorithm. The transformation can concern only
one element or two elements at a time. Correspondingly, there are two overloaded
versions:

template <class Inputlterator, class Outputlterator,
class UnaryOperation>
Outputlterator transform(Inputlterator first,
Inputlterator last,
Outputlterator result,
UnaryOperation op);

Here, the operationp is applied to each element in the rargst  to last
exclusive, and the result is copied into the range beginning mwitit . result
may be identical tdirst ; in this case, the original elements are substituted by the
transformed ones. The return value is an iterator to the position after the end of the
target range.

template <class Inputlteratorl, class Inputlterator2,
class Outputlterator, class BinaryOperation>
Outputlterator transform(Inputlteratorl firstl,
Inputlteratorl last1,
Inputlterator2 first2,
Outputlterator result,
BinaryOperation bin_op);
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In the second version, two ranges are taken into account. The first is the inter-
val [firstl, lastl) , the second the intervdirst2, first2 + lastl -
firstl) ,thatis, the second range has exactly the same size as the firstn Tye
operation takes one element from each of the two ranges and stores their result in
result .result may be identical tdirstl  orfirst2 ; in this case, the original
elements are substituted with the transformed ones. The return value is an iterator to
the position after the end of the target range.

The example shows two vectors of names. The elements of one vector are
changed into upper case letters. The elements of the third vector originate from the
elements of the first two vectors joined by ‘and.’

/I k5/transform.cpp
#include<algorithm>
#include<showseq.h>
#include<string>
#include<vector>

/I unary operation as function
std::string upper_case(std::string s) {

for(size_t i = 0; i < s.ength(); ++i)
if(s[i] >= 'a’ && s[i] <= 'Z)
sli] -= 'a’-'A’;
return s;
}
class join { 1 binary operation as functor
public:
std::string operator()(const std::string& a,
const std::string& b) {
return a + " and " + b;
}
I3
int main() {

vector<string> Gals(3), Guys(3),
Couples(3); I there must be enough space
Gals[0] = "Annabella";
Gals[1] = "Scheherazade";
Gals[2] = "Xaviera";

Guys[0] = "Bogey";
Guys[1] "Amadeus";
Guys[2] "Wiladimir";

std::transform(Guys.begin(), Guys.end(),
Guys.begin(), 1 target == source
upper_case);
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std::transform(Gals.begin(), Gals.end(),
Guys.begin(), Couples.begin(),
join());

br_stl::showSequence(Couples, "\n");

}
Output of the program is:

Annabella and BOGEY
Scheherazade and AMADEUS
Xaviera and WLADIMIR

The example shows different variations:

e The unary transformationpper_case() is implemented as a function, the bi-
nary one as a functor. This also works the other way round.

e The application ofupper_case()  with the transform() algorithm uses the
same container to store the results, whereas the binary transformnutign
stores the results in a different contai@auples .

5.4.6 replace and variants

The replace()  algorithm replaces each occurrence of vatig value  with
new_value sequentially. Alternatively, a condition-controlled replacement with a
unary predicate is possible witbplace_if()

template <class Forwardlterator, class T>

void replace(Forwardlterator first,
Forwardlterator last,
const T& old_value,
const T& new_value);

template <class Forwardlterator, class Predicate, class T>
void replace_if(Forwardlterator first,

Forwardlterator last,

Predicate pred,

const T& new_value);

Now, for the first time, we can see the copying variations of algorithms discussed
in Section5.1:

template <class Inputlterator, class Outputlterator,
class T>
Outputlterator replace_copy(Inputlterator first,
Inputlterator last,
Outputlterator result,
const T& old_value,
const T& new_value);
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template <class lterator, class Outputlterator,
class Predicate, class T>
Outputlterator replace_copy_if(lterator first,
Iterator last,
Outputlterator result,
Predicate pred,
const T& new_value);

The copying variations differ in their names by an addegpy . In the following
example, all four cases are presented because up to now there has not been one
sample program with a copying variation.

/I k5/replace.cpp
#include<algorithm>
#include<showseq.h>
#include<string>
#include<vector>

/I unary predicate as functor
class Citrusfruit {

public:
bool operator()(const std::string& a) {
return a == "lemon"
|| a == "orange"
[| a == "lime";

h

using namespace std;

int main() {
vector<string> Fruitbasket(3), Crate(3);

Fruitbasket[0] = "apple";
Fruitbasket[1] = "orange";
Fruitbasket[2] = "lemon";
br_stl::showSequence(Fruitbasket); // apple orange lemon

cout << "replace:
"replace apple with quince:\n";
replace(Fruitbasket.begin(), Fruitbasket.end(),
string("apple"), string("quince"));
br_stl::showSequence(Fruitbasket); // quince orange lemon

cout << "replace_if:
"replace citrus fruits with plums:\n";
replace_if(Fruitbasket.begin(), Fruitbasket.end(),
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Citrusfruit(), string("plum™));
br_stl::showSequence(Fruitbasket); // quince plum plum

cout << "replace_copy: "
"copy and replace the plums
"with limes:\n";
replace_copy(Fruitbasket.begin(), Fruitbasket.end(),
Crate.begin(), string("plum”), string("lime"));
br_stl::showSequence(Crate); I quince lime lime

cout << "replace_copy_if: copy and replace
"the citrus fruits with tomatoes:\n";

replace_copy_if(Crate.begin(), Crate.end(),
Fruitbasket.begin(), Citrusfruit(),
string("tomato"));

br_stl::showSequence(Fruitbasket); // quince tomato tomato

Since the scheme is always the same, from now on ¢hpy variations of the
algorithms will be considered only as prototypes, but not as examples.

5.4.7 fill and fill_n

When a sequence is to be completely or partly initialized with the same values, the
fill() orfill_n() algorithms will help:

template <class Forwardlterator, class T>
void fill(Forwardlterator first, Forwardlterator last,
const T& value);

template <class Outputlterator, class Size, class T>
Outputlterator fill_n(Outputlterator first, Size n,
const T& value);

Both are as simple dsta() and easy to apply:

/I k5/fill.cpp
#include<algorithm>
#include<vector>
#include<showseq.h>
using namespace std;

int main() {
vector<double> v(8);

/I initialize all values with 9.23
fill(v.begin(), v.end(), 9.23);
br_stl::showSequence(v);
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/4ill_n() expects the specification of the number of elements in the sequence
which are to be initialized with a value and returns an iterator to the end of the
range. Here, the first half of the sequence is changed, namely initialized with 1.01:

*
vector<double>::const_iterator iter =
fill_n(v.begin(), v.size()/2, 1.01);

br_stl::showSequence(v);
cout << "iter is in position = "
<< (iter - v.begin())
<< ", fiter = " << *iter << endl;

5.4.8 generate and generate n

A generator in thgenerate()  algorithm is a function object or a function which is
called without parameters and whose results are assigned one by one to the elements
of the sequence. As witfil() , there is a variation which expects an iterator pair,

and a variation which needs the starting iterator and a number of pieces:

template <class Forwardlterator, class Generator>
void generate(Forwardlterator first, Forwardlterator last,
Generator gen);

template <class Outputlterator, class Size,
class Generator>
Outputlterator generate_n(Outputlterator first, Size n,
Generator gen);

The example shows both variations, with the generator occurring in two versions
as well. The first generator is a function object and generates random numbers, the
second one is a function for generating powers of two.

/I include/myrandom.h
#ifndef MYRANDOM_H
#define MYRANDOM_H
#include<cstdlib>  // rand() andRAND_MAX

namespace br_stl {

class Random {
public:
Random(int b): range(b) {}
/I returns an int-random number between 0 and range -1
int operator()() {
return (int)((double)rand()*range/(RAND_MAX+1.0));
}

private:
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int range;
J5
Hendif

The random function object uses the standard functiod) from <cstdlib>
which generates a value between 0 RadD_MAMhich is subsequently normalized
to the required range. For further use, the random number generator is packed into
an include file and stored in the include directory.

/I k5/generate.cpp

#include<algorithm> 1 main program
#include<vector>

#include<showseq.h>

#include<myrandom.h> I (see above)
using namespace std;

int PowerOfTwo() { // double value; begin with 1
static int Value = 1;
return (Value *= 2)/2;

}

int main() {
vector<int> v(12);

br_stl::Random whatAChance(1000);
generate(v.begin(), v.end(), whatAChance);
br_stl::showSequence(v);

/I 103 33533355217 536 195 700 949 274 444

generate_n(v.begin(), 10, PowerOfTwo); // only 10 out of 12!
br_stl::showSequence(v); // 1248163264 128256512 274 444

remove and variants

The algorithm removes all elements from a sequence which are equal to a value
value or which satisfy a predicatgred . Here, the prototypes are listed including
the copying variations:

template <class Forwardlterator, class T>

Forwardlterator remove(Forwardlterator first,
Forwardlterator last,
const T& value);

template <class Forwardlterator, class Predicate>

Forwardlterator remove_if(Forwardlterator first,
Forwardlterator last,
Predicate pred);
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tip

template <class Inputlterator, class Outputlterator,
class T>
Outputlterator remove_copy(Inputlterator first,
Inputlterator last,
Outputlterator result,
const T& value);

template <class Inputlterator, class Outputlterator,
class Predicate>
Outputlterator remove_copy_if(Inputlterator first,
Inputlterator last,
Outputlterator result,
Predicate pred);

‘Removing an element’ in practice means that all subsequent elements shift one
position to the left. When only one element is removed, the last element is duplicated,
because a copy of it is assigned to the preceding positémmove() returns an
iterator to the now shortened end of the sequence.

It should be noted that the total length of the sequence does not change! No
rearrangement of the memory space is carried out. The range between the returned
iterator ancend() only contains meaningless elements.

/I k5/remove.cpp
#include<iostream>
#include<algorithm>
#include<vector>
#include<iterator>
#include<string>
#include<cstring>
#include<iota.h>

bool isVowel(char c) {
return std::strchr("aeiouAEIOU", c) != 0;

}

using namespace std;

int main() {

vector<char> v(26);

/I generate alphabet in lower case letters:

br_stl::iota(v.begin(), v.end(), 'a’);

ostream_iterator<char> Output(cout, ");

copy(v.begin(), v.end(), Output);

cout << endl;

/* Here, the sequence is not displayed by meaistiovSequence() , because not
all values betweehegin() andend() are to be shown, but only the significant
ones (iteratolast ).

*/
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cout << "remove 't ";
vector<char>:iterator last =
remove(v.begin(), v.end(), 't);

/llast =  new end after shifting
Il v.end() remains unchanged
copy(v.begin(), last, Output);
/I abcdefghijkimnopqgrsuvwxyz (tis missing)
cout << endl;

last = remove_if(v.begin(), last, isVowel);
cout << "only consonants left: ";
copy(v.begin(), last, Output);

/I bedfghjklimnpgrsvwxyz
cout << endl;

cout << "complete sequence up to end() with "
" meaningless rest elements: ";
copy(v.begin(), v.end(), Output);
/I bedfghjklimnpgrsvwxyzwxyzz
cout << endl;

5.4.10 unique

Theunique() algorithm deletes identical consecutive elements except one and is
already known as the member function of containers (fEgeln addition, it is
provided as a function with an additional copying variation:

template <class Forwardlterator>
Forwardlterator unique(Forwardlterator first,
Forwardlterator last);

template <class Forwardlterator, class BinaryPredicate>

Forwardlterator unique(Forwardlterator first,
Forwardlterator last,
BinaryPredicate binary_pred);

template <class Inputlterator, class Outputlterator>

Outputlterator unique_copy(Inputlterator first,
Inputlterator last,
Outputlterator result);

template <class Inputlterator, class Outputlterator,
class BinaryPredicate>
Outputlterator unique_copy(Inputlterator first,
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Inputlterator last,
Outputlterator result,
BinaryPredicate binary_pred);

A simple example shows the first two variations. As withhove() , shortening
the sequence through deletion of the identical adjacent elements does not affect the
total length of the sequence. Therefore, here too an iterator to the logical end of the
sequence is returned, which is different from the physical end givemdiy .

/I k5/unique.cpp
#include<iostream>
#include<algorithm>
#include<vector>
#include<iterator>
using namespace std;

int main() {
vector<int> v(20);
/I sequence with identical adjacent elements
for(int i = 0; i < v.size(); ++i)
v[i] = il3;

ostream_iterator<int> Output(cout, " ");
copy(v.begin(), v.end(), Output);

/I 00011122233344455566
cout << endl;

vector<int>::iterator last =
unique(v.begin(), v.end());
copy(v.begin(), last, Output); // 0123456

The superfluous elementslast and behind can be removed with
v.erase(last, v.end())

5.4.11 reverse

reverse()  reverses the order of elements in a sequence: the first shall be last — and
vice versa. Since the first element is swapped with the last, the second with the last
but one, and so on, a bidirectional iterator is required which can process the sequence
starting with the end.

template <class Bidirectionallterator>
void reverse(Bidirectionallterator first,
Bidirectionallterator last);

template <class Bidirectionallterator, class Outputlterator>
Outputlterator reverse_copy(Bidirectionallterator first,
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Bidirectionallterator last,
Outputlterator result);

The example reverses a character sequence which represents a nonperfect palin-
drome and a sequence of numbers.

/I k5/reverse.cpp
#include<algorithm>
#include<showseq.h>
#include<vector>
#include<iota.h>
using namespace std;

int main() {
char s[] = "Madam";
vector<char> vc(s, s + sizeof(s)-1); // —1 because of null byte
br_stl::showSequence(vc); 1 Madam

reverse(vc.begin(), vc.end());
br_stl::showSequence(vc); I madaM

vector<int> vi(10);
br_stl::iota(vi.begin(), vi.end(), 10);
br_stl::showSequence(vi); I 1011121314151617 1819

reverse(vi.begin(), vi.end());
br_stl::showSequence(vi); I 19181716151413121110

5.4.12 rotate

This algorithm shifts the elements of a sequence to the left in such a way that those
that fall out at the beginning are inserted back at the end.

template <class Forwardlterator>

void rotate(Forwardlterator first,
Forwardlterator middle,
Forwardlterator last);

template <class Forwardlterator, class Outputlterator>

Outputlterator rotate_copy(Forwardlterator first,
Forwardlterator middle,
Forwardlterator last,
Outputlterator result);

The reference docume6t States in an ‘immediately ob-
vious’ way, that for each non-negative intedgex last - first , an element
is moved from positior(first + i) into position (first + (i + (last -
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middle)) % (last - first)) . In other wordsfirst ~ andlast as usual speci-

fy the range in which the rotation is to take place. Thiiddle iterator points to the

element which is to be located at the beginning of the sequence, after the rotation.
The example shows a series of rotations by one element each and a series of

rotations by two positions each.

/I k5/rotate.cpp
#include<showseq.h>
#include<algorithm>
#include<vector>
#include<iota.h>
using namespace std;

int main() {
vector<int> v(10);
br_stl::iota(v.begin(), v.end(), 0);

for(size_t shift = 1; shift < 3; ++shift) {
cout << "Rotation by " << shift << endl;
for(int i = 0; i < v.size()/shift; ++i) {
br_stl::showSequence(v);
rotate(v.begin(), v.begin() + shift, v.end());

The program displays:

Rotation by 1

0123456789
1234567890
2345678901

9012345678

Rotation by 2

0123456789
2345678901
4567890123

8901234567
Exercise
5.3 Write an algorithm

template <class Forwardlterator, class Distance>
void rotate_steps(Forwardlterator first,
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Forwardlterator last,
Distance steps);

making use ofotate()  which, apart from the iterators for the range, expects the
number of rotationsteps . A negative value ofteps will rotate the sequence by
steps positions to the left, a positive value to the right. The valustefs can be
greater than the length of the sequence. A possible application could be:

vector<int> v(10);
br_stl::iota(v.begin(), v.end(), 0);
br_stl::showSequence(v);

cout << "Rotation by -11 (left)" << endl;
rotate_steps(v.begin(), v.end(), -11);
br_stl::showSequence(v);

cout << "Rotation by +1 (right)" << endl;
rotate_steps(v.begin(), v.end(), 1);
br_stl::showSequence(v);

The result would be a sequence shifted by 1 (=11 modulo 10) to the left, cancelled
by the subsequent shift to the right.

random_shuffle

This algorithm is used for random shuffling of the order of elements in a sequence
that provides random access iterators, for exawvgader ordeque . It exists in two
variations:

template <class RandomAccesslterator>
void random_shuffle(RandomAccessilterator first,
RandomAccesslterator last);

template <class RandomAccesslterator,
class RandomNumberGenerator>
void random_shuffle(RandomAccessilterator first,
RandomAccesslterator last,
RandomNumberGenerator& rand);

The shuffling of the order will be uniformly distributed; this obviously depends
on the random number generator used. The first variation uses an internal random
number function, that is, not one specified it

It is expected that the random number generator or the random function will take
a positive argument of the distance type of the random access iterator used and
return a value between 0 ana-1).

For a change, a second random number generator n#weDis specified in
the example, which has the advantages of being very simple and independent from
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system functions. The disadvantage is its short period. But in many cases, this is
irrelevant.

/I include/rand.h
#ifndef RAND_H
#define RAND_H

namespace br_stl {
class RAND {
public:
RAND() : r(1) {}
int operator()(int X) {
/I returns arint pseudo random number between 0 Xrd
/I period: 2048
r = (125 * r) % 8192;
return int(double(r)/8192.0*X);

}
private:
long int ;
b
}
#endif

This simple random number generator may be used more often by including
rand.hvia #include . The two random number generators presented up to now dif-
fer not only in their algorithms, but also in their application:

e RANDIs used when the call needs as function object an argukehtvalue be-
tween 0 andX— 1) is returned. The construction oR&NDobject does not require
parameters.

e Random (see pagéd 12) does not need a parameter at all. However, during con-
struction of aRandom object, a numbeK must be specified which defines the
range of possible random numbers (Xte 1).

Depending on the purpose, one or the other variation may be chosen. More so-
phisticated random number generators can be found in the literature (for example
). For the examples in this book, the two variations above are suffi-
cient.

/I k5/rshuffle.cpp

/I Example forandom_shuffle()
#include<algorithm>
#include<vector>
#include<showseq.h>
#include<iota.h>
#include<rand.h>

using namespace std;
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int main() {
vector<int> v(12);
br_stl::iota(v.begin(), v.end(), 0); // 01234567891011

br_stl::RAND aRAND;
random_shuffle(v.begin(), v.end(), aRAND);
br_stl::showSequence(v); I 15983112010674

/I use of the system-internal random number generator

random_shuffle(v.begin(), v.end());

br_stl::showSequence(v); I 54687213109110
}

5.4.14 partition

A sequence can be split withartition() into two ranges such that all elements
that satisfy a given criteriopred lie before all those that do not. The return value
is an iterator which points to the beginning of the second range. All elements lying
before this iterator satisfy the predicate. A typical application of such a partition can
be found in the well-known quicksort algorithm.

The second variatiorstable_partition() , guarantees in addition that the
relative order of the elements within one range is maintained. From a function point
of view, this second variation means that the first variation is normally not needed
at all. With limited memory, however, the second variation takes slightly longer to
run (O(N log N) instead ofO(N), N = last — first), so the STL provides both
variations. The prototypes are:

template <class Bidirectionallterator, class Predicate>

Bidirectionallterator partition(Bidirectionallterator first,
Bidirectionallterator last,
Predicate pred);

template <class Forwardlterator, class Predicate>

Forwardlterator stable_partition(Forwardlterator first,
Forwardlterator last,
Predicate pred);

In the example, a randomly ordered sequence is partitioned into positive and
negative numbers. Both simple and stable partitions are shown:

/I k5/partition.cpp

#include<algorithm>

#include<vector>

#include<functional>
#include<showseq.h>

#include<iota.h>

#include<rand.h> I see pagd 20
using namespace std;
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int main() {
vector<int> v(12);
br_stl::iota(v.begin(), v.end(), -6);
br_stl::RAND aRAND;
random_shuffle(v.begin(), v.end(), aRAND);

vector<int> unstable = v,
stable = v;

partition(unstable.begin(), unstable.end(),
bind2nd(less<int>(),0));

stable_partition(stable.begin(), stable.end(),
bind2nd(less<int>(),0));

cout << "Partition into negative and positive elements";
cout << endl << "sequence o
br_stl::showSequence(v); 1l -5-132-35-4-6401-2

cout << "stable partition
br_stl::showSequence(stable); 1l -5-1-3-4-6-2325401

cout << "unstable partition :";

/I the negative elements are no longer

/I in their original order

br_stl::showSequence(unstable); // -5-1-2-6-3-4524013

5.5 Sorting, merging, and related
operations

All algorithms described in this section have two variations. One compares elements
with the < operator, the other uses a function object which shall be cabiet.
Instead of the function object, a function can be used as well.

The function call with the parametefsandB or the callcomp(A, B) of the
function object yieldsrue , if A < B applies with regard to the required ordering
relation.

55.1 sort

Thesort() algorithm sorts between the iteratditst  andlast . It is suitable

only for containers with random access iterators, sucteer or deque . Ran-

dom access to elements of a list is not possible; therefore, the member function
list::sort() must be employed for lists of typiat

template <class RandomAccesslterator>
void sort(RandomAccesslterator first,
RandomAccesslterator last);
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template <class RandomAccesslterator, class Compare>
void sort(RandomAccesslterator first,
RandomAccessilterator last,
Compare comp);

Sorting is not stable, that is, different elements which have the same sorting key
may not have the same position in relation to each other in the sorted sequence that
they had in the unsorted sequence. The average cO$tNdog N) with N = last
- first . No cost estimate is given for the worst case behavior. If the worst case
behavior is relevant, however, it is recommended that youstasée sort()

By looking into the implementation we can see the basic reason fosthi§:
uses quicksort, which in the worst case has a complexit9(@f?2), depending on
the data and the internal partitioning.

template <class RandomAccesslterator>
void stable_sort(RandomAccessliterator first,
RandomAccesslterator last);

template <class RandomAccesslterator, class Compare>

void stable_sort(RandomAccessiterator first,
RandomAccesslterator last,
Compare comp);

Even in the worst case, the complexity ©téble_sort() is O(N log N), if
enough memory is available. Otherwise, the cost is at ig¢s{ (log N)?). Inter-
nally, a merge sort algorithm is used (more about this on gag®e whose time
consumption is on average a constant factor of 1.4 higher than that of quicksort. The
time increase of 40% is compensated by the excellent worst case behavior and the
stability of stable_sort()

The example shows both variations. The random number generator is taken from
the previous example. The use of a function instead oftbperator is also shown;
the ordering criterion in this case is thtegerpart of adouble number. This leads
to elements with the same key but with different values, which are used to show the
non-stability ofsort()

/I k5/sort.cpp

#include<algorithm>

#include<vector>

#include<showseq.h>

#include<rand.h> I see pagd.20
using namespace std;

bool integer_less(double x, double y) {
return long(x) < long(y);

}

int main() {
vector<double> v(17);
br_stl::RAND aChance;
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/I initialize vector with random values, with
/I many values having the same integer part:

for(size_t i = 0; i < v.size(); ++i) {
v[i] = aChance(3) + double(aChance(100)/1000.0);
}
random_shuffle(v.begin(), v.end(), aChance);
vector<double> unstable = v, 1l auxiliary vectors
stable = v;
cout << "Sequence An';

br_stl::showSequence(v);
Il 2.022 0.09 0.069 2.097 0.016 1.032 0.086 0.073 2.065 1.081
/I 1.042 0.0450.042 1.098 1.077 1.07 0.03

/I sorting with< operator:

stable_sort(stable.begin(), stable.end());

cout << "\n no difference, because double number "
"is used as key\n";

cout << "stable sorting An";

br_stl::showSequence(stable);

Il 0.016 0.03 0.042 0.045 0.069 0.073 0.086 0.09 1.032 1.042

/I 1.07 1.077 1.081 1.098 2.022 2.065 2.097

sort(unstable.begin(), unstable.end());

cout << "unstable sorting :\n";
br_stl::showSequence(unstable);

Il 0.016 0.03 0.042 0.045 0.069 0.073 0.086 0.09 1.032 1.042
/I 1.07 1.077 1.081 1.098 2.022 2.065 2.097

/I sorting with function instead of operator:

unstable = v;

stable = v;

cout << "\n differences, because only the int part "
"is used as key\n";

stable_sort(stable.begin(), stable.end(),integer_less);
cout << "stable sorting (integer key) :\n";
br_stl::showSequence(stable);

/I 0.09 0.069 0.016 0.086 0.073 0.045 0.042 0.03 1.032 1.081
/I 1.042 1.098 1.077 1.07 2.022 2.097 2.065

sort(unstable.begin(), unstable.end(), integer_less);
cout << "unstable sorting (integer key):\n";
br_stl::showSequence(unstable);

/I 0.030.09 0.069 0.016 0.086 0.073 0.045 0.042 1.07 1.032
/I 1.077 1.081 1.042 1.098 2.065 2.097 2.022
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partial_sort

Partial sorting brings th&/ smallest elements to the front, the rest remains unsorted.
The algorithm, however, does not require the numligrbut an iteratomiddle to

the corresponding position, so that = middle - first applies. The prototypes
are:

template <class RandomAccesslterator>

void partial_sort(RandomAccesslterator first,
RandomAccesslterator middle,
RandomAccesslterator last);

template <class RandomAccesslterator, class Compare>

void partial_sort(RandomAccesslterator first,
RandomAccesslterator middle,
RandomAccesslterator last,
Compare comp);

The complexity is approximatel® (N log M ). The program excerpt for a vector
v shows the partial sorting. In the result, all elements in the first half are smaller than
those in the second half. Furthermore, in the first half the elements are sorted, in the
second half they are not.

br_stl::showSequence(v);
partial_sort(v.begin(), v.begin()+v.size()/2, v.end());
cout << "half sorted:\n";
br_stl::showSequence(v);

Both variations exist in a copying version, where the iteratessit_first
andresult_last refer to the target container. The number of sorted elements re-
sults from the smaller of the two differencesult_last - result_first and
last - first

template <class Inputlterator, class RandomAccesslterator>
RandomAccesslterator partial_sort_copy(
Inputlterator first,
Inputlterator last,
RandomAccesslterator result_first,
RandomAccesslterator result_last);

template <class Inputlterator, class RandomAccessiterator,
class Compare>

RandomAccesslterator partial_sort_copy(
Inputlterator first,
Inputlterator last,
RandomAccesslterator result_first,
RandomAccesslterator result_last,
Compare comp);
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5.5.2

tip

The returned random access iterator points to the end of the described range, that
is, toresult_last or result_first + (last - first) , Whichever value is
smaller.

Exercise

5.4 Complete the sample program from paieS with instructions that compare
the vectorsstablel] and unstable]] and display all element pairs of] or
stable[]  for which the stability criterion was violated.

nth_element

Thenth largest omth smallest element of a sequence of random access iterators can
be found by means afth_element()

template <class RandomAccesslterator>

void nth_element(RandomAccesslterator first,
RandomAccesslterator nth,
RandomAccesslterator last);

template <class RandomAccesslterator, class Compare>

void nth_element(RandomAccesslterator first,
RandomAccesslterator nth,
RandomAccesslterator last,
Compare comp);

The iteratomth is set to the required position, for example, the beginning of the
container. After a call ofith_element() , the smallest element has been placed in
this position. Thus, the order of elements in the containeh&nged If before the
callnth points, for example, to the positiarbegin()  + 6, then, after the call, this
position contains the seventh smallest element. After the call of the algorithm, only
elements that are smaller than or equaktoh) and all elements to the right of it
stand to the left ohth .

The average time of the algorithm is line&@((V)). In the present implemen-
tation, the time isO(IN?) in the worst but rare case when a partition mechanism
similar to quicksort is used.

/I k5/nth.cpp Example fomth_element
#include<algorithm>

#include<deque>

#include<showseq.h>
#include<myrandom.h>
#include<functional> /I greater<>
using namespace std;
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int main() {
deque<int> d(15);
generate(d.begin(), d.end(), br_stl::Random(1000));
br_stl::showSequence(d);
Il 840394 783 798 911 197 335 768 277 553 477 628 364 513 952

deque<int>::iterator nth = d.begin();
nth_element(d.begin(), nth, d.end());

cout << "smallest element:"
<< (*nth) 1 197
<< endl;

/* The standard comparison objggeater causes the sequence to be reversed. In
this case, the greatest element is at the first position:

*

/

/I here stillisnth == d.begin()
nth_element(d.begin(), nth, d.end(), greater<int>());

cout << "greatest element
<< (*nth) I 952
<< endl;

/* With the< operator, the greatest element is at the end:

*

nth = d.end();

--nth; /i now points to the last element
nth_element(d.begin(), nth, d.end());

cout << "greatest element
<< (*nth) I 952
<< endl;

/I assumption for median valud:size() is odd
nth = d.begin() + d.size()/2;
nth_element(d.begin(), nth, d.end());

cout << "Median value :
<< (*nth) I 553
<< endl;

5.5.3 Binary search

All algorithms in this section are variations of a binary search. The way binary search
functions was briefly explained on pa@eé. When it is possible to access a sorted
sequence of. elements randomly with a random access iterator, a binary search is
very fast. A maximum ofi + log, n accesses are needed to find the element or to
determine that it does not exist.

If random access is not possible, for example in a list where you have to travel
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from one element to the other in order to find a given one, access time is of the order
O(n).

The STL provides four algorithms used in connection with searching and insert-
ing in sorted sequences, which are very similar to each other:

binary search

template <class Forwardlterator, class T>

bool binary_search(Forwardlterator first,
Forwardlterator last,
const T& value);

template <class Forwardlterator, class T, class Compare>
bool binary_search(Forwardlterator first,

Forwardlterator last,

const T& value,

Compare comp);

This is the binary search proper. Here and in the following three algorithms (or six,
when you include th€ompare variations), the forward iterator can be substituted
with a random access iterator, provided the container allows it. The function returns
true if the value is found.

Only the < operator is used, evaluating, in the first variation, (e
< value) && !(value < *)) relation (compare withoperator==() on
page2l). i is an iterator in the rangfirst, last) . In the second variation
(‘comp(*i, value) && !comp(value, *i)) is evaluated accordingly. An
example is shown after the next three algorithms.

lower_bound

This algorithm finds the first position where a valudue can be inserted without
violating the ordering. The returned iterator, let us call,ipoints to this position,

so that insertion withnsert(i, value) is possible without any further search
processes. For all iteratgran the rangédfirst, i) it holds thatj < value or
comp(*, value) == true . The prototypes are:

template <class Forwardlterator, class T>

Forwardlterator lower_bound(Forwardlterator first,
Forwardlterator last,
const T& value);

template <class Forwardlterator, class T, class Compare>

Forwardlterator lower_bound(Forwardlterator first,
Forwardlterator last,
const T& value,
Compare comp);
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upper_bound

This algorithm finds théast position where a valuealue can be inserted without
violating the ordering. The returned iteraiompoints to this position, so that rapid
insertion is possible witinsert(i, value) . The prototypes are:

template <class Forwardlterator, class T>

Forwardlterator upper_bound(Forwardlterator first,
Forwardlterator last,
const T& value);

template <class Forwardlterator, class T, class Compare>

Forwardlterator upper_bound(Forwardlterator first,
Forwardlterator last,
const T& value,
Compare comp);

equal_range

This algorithm determines the largest subrange within which a welue can be
inserted at an arbitrary position without violating the ordering. Thus, with regard to
ordering, this range contains identical values. The elenmefite ~ andp.second

of the returned iterator pair, hepg limit the range. For each iterat&rwhich sat-
isfies the conditiorp.first < k < p.second , rapid insertion is possible with
insert(k, value) . The prototypes are:

template <class Forwardlterator, class T>
pair<Forwardlterator, Forwardlterator>
equal_range(Forwardlterator first,
Forwardlterator last,
const T& value);

template <class Forwardlterator, class T, class Compare>

pair<Forwardlterator, ForwardlIterator>

equal_range(Forwardlterator first, Forwardlterator last,
const T& value, Compare comp);

The algorithms described above are now shown with the aid of a sample program.
Because of its similarity witthower_bound() , upper_bound() is not included.
You must ensure that the container is sorted, since all algorithms in this section make
this assumption.

/I k5/binarysearch.cpp

/I Example forbinary_search  and related algorithms
#include<algorithm>

#include<list>

#include<string>

#include<showseq.h>

using namespace std;
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int main() {

list<string> Places;

Places.push_front("Bremen");

Places.push_front("Paris");

Places.push_front("Milan");

Places.push_front("Hamburg");

Places.sort(); 1l important precondition!
br_stl::showSequence(Places);

string City;
cout << "Search/insert which town? ";
cin >> City;

if(binary_search(Places.begin(), Places.end(), City))
cout << City << " exists\n";

else
cout << City << " does not yet exist\n";

/I insertion at the correct position
cout << City << " is inserted:\n";
list<string>::iterator i =

lower_bound(Places.begin(), Places.end(), City);
Places.insert(i, City);
br_stl::showSequence(Places);

/I range of identical values
pair<list<string>::const_iterator,
list<string>::const_iterator>
p = equal_range(Places.begin(), Places.end(), City);

/I The two iterators of the pajy limit the range in whiclCity occurs:
list<string>::difference_type n =
distance(p.first, p.second);
cout << City << " is contained " << n
<< " times in the list\n";

5.5.4 Merging

Merging is a method for combining two sorted sequences into one. Step by step,
the first elements of both sequences are compared, and the smaller (or the greater,
depending on the ordering criterion) element is placed in the output sequence. The
prototypes are:

template <class Inputlteratorl, class Inputlterator2,

class Outputlterator>

Outputlterator merge(Inputlteratorl firstl,

Inputlteratorl lastl,
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Inputlterator2 first2,
Inputlterator2 last2,
Outputlterator result);

template <class Inputlteratorl, class Inputlterator2,
class Outputlterator, class Compare>

Outputlterator merge(Inputlteratorl firstl,
Inputlteratorl lastl,
Inputlterator2 first2,
Inputlterator2 last2,
Outputlterator result,
Compare comp);

merge() assumes an existing output sequence. When one of the two input
sequences is exhausted, the remainder of the other one is copied into the output
sequence. A brief example will illustrate this:

/I k5/merge0.cpp
#include<algorithm>
#include<showseq.h>
#include<vector>
#include<iota.h>
using namespace std;

int main() {
vector<int> v1(6); I sequence 1
br_stl:iota(vl.begin(), vi.end(), 0); // initialize
br_stl::showSequence(vl); 1 display
vector<int> v2(10); I sequence 2
br_stl:iiota(v2.begin(), v2.end(), 0); // initialize
br_stl::showSequence(v2); i display
vector<int> result(vl.size()+v2.size()); // sequence 3
merge(v1.begin(), vl.end(), I merge
v2.begin(), v2.end(),
result.begin());
br_stl::showSequence(result); I display
}
The result of the program is
012345 (v1)
0123456789 (v2)

0011223344556789 (result )

Thanks to its structure, merging allows very fast sorting with a complexity of
O(N log N) following the recursive scheme:
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1. Split list into two halves.

2. If the halves have more than one element, sort both halvesthighprocedure
(recursion).

3. Merge both halves into result list.

Obviously, a nonrecursive variation is possible. Sorting is stable. The disadvantage
is the additional storage space for the result. For comparison with the above scheme,
the merge sort algorithm is now formulated with the means provided by the STL:

/I k5/mergesort_vec.cpp Simple example fomergesort()
#include<algorithm>

#include<showseq.h>

#include<vector>

#include<myrandom.h>

template<class Forwardlterator, class Outputlterator>
void mergesort(Forwardlterator first,
Forwardlterator last,
Outputlterator result) {
typename std::iterator_traits<Forwardlterator>::difference_type
n = std::distance(first, last),
Half = n/2;
Forwardlterator Middle = first;
std::advance(Middle, Half);

if(Half > 1) 1 sort left half, if needed
mergesort(first, Middle, result); // recursion
if(n - Half > 1) { 1 sort right half, if needed

Outputlterator result2 = result;
std::advance(result2, Half);
mergesort(Middle, last, result2); // recursion

}

/I merge both halves and copy back the result
Outputlterator End =
std::merge(first, Middle, Middle, last, result);
std::copy(result, End, first);
}

int main() {
std::vector<int> v(20), buffer(20);
br_stl::Random whatAChance(1000);

std::generate(v.begin(), v.end(), whatAChance);
br_stl::showSequence(v); 1 random numbers
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/I sort and display
mergesort(v.begin(), v.end(), buffer.begin());
br_stl::showSequence(v); 1 sorted sequence

}

The last two lines of the function can be combined into one, as can often be
found in the implementation of the STL, although this will make it more difficult to
read:

/I Merge both halves and copy back the result
copy(result,
merge(first, Middle, Middle, last, result), first);

The advantage of the algorithm described above etale_sort() is that
not just containers working with random access iterators can be sorted. Forward
iterators are sufficient, so thatin the above program can also be a list. It can be
filled with push_front() . The only condition is that a lidgtuffer ~ exists which
has at least as many elementsva€Only a few changes are neededniain() ;
mergesort()  remains unchanged:

/I Excerpt fromk5/mergesort_list.cpp
#include<list>

int main() { 1 with list instead of vector
std::list<int> v;
for(int i = 0; i < 20; ++i)
v.push_front(0); I create space

br_stl::Random whatAChance(1000);
std::generate(v.begin(), v.end(), whatAChance);
br_stl::showSequence(v); 1 random numbers

std::list<int> buffer = v;
mergesort(v.begin(), v.end(), buffer.begin());
br_stl::showSequence(v); I sorted sequence

}

The ‘merge sort’ technique is used in a slightly different form when very large
files are to be sorted which do not fit into memory, but mass storage can also be used
(see Chaptet0).

Merging in place

When sequences are to be merged in place, a buffer must be used. The function
inplace_merge() merges sequences in such a way that the result replaces the
input sequences. The prototypes are:

template <class Bidirectionallterator>

void inplace_merge(Bidirectionallterator first,
Bidirectionallterator middle,
Bidirectionallterator last);
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template <class Bidirectionallterator, class Compare>

void inplace_merge(Bidirectionallterator first,
Bidirectionallterator middle,
Bidirectionallterator last,
Compare comp);

The buffer provided is dependent on the implementation.

/I k5/mergel.cpp
#include<algorithm>
#include<showseq.h>
#include<vector>

int main() {
std::vector<int> v(16); 1 even number
int middle = v.size()/2;
for(int i = 0; i < middle; ++i) {
Vv[i] = 2%; 1 even
vimiddle + i] = 2% + 1; I odd
}
br_stl::showSequence(v);
std::inplace_merge(v.begin(), v.begin() + middle,
v.end());
br_stl::showSequence(v);

}

Here, the first half of a vector is filled with even numbers, the second half with odd
numbers. After the merge, the same vector contains all numbers without explicitly
having to specify a result range:

0246810121413579111315 before
0123456789101112131415 after

5.6 Set operations on sorted structures

This section describes the basic set operations, such as union, intersection, and so
on, onsortedstructures. In the STL, theet class is based on sorted structures (see
Section4.4.7). The complexity of the algorithms 8(N; + N,), whereN; and N,
denote the number of elements of the sets involved.

The algorithms presented here, which use output iterators, are suitable for set
operations only to a limited extent, as explained in Sedhiéna

5.6.1 includes

The functionincludes determines whether each element of a second sorted struc-
ture Ss is contained in the first structurg,. Thus, it checks whether the second



SET OPERATIONS ON SORTED STRUCTURES 135

structure is a subset of the first one. The return valueués , if So C S; holds,
otherwise it isfalse . The prototypes are:

template <class Inputlteratorl, class Inputlterator2>
bool includes(Inputlteratorl firstl, Inputlteratorl lastl,
Inputlterator2 first2, Inputlterator2 last2);

template <class Inputlteratorl, class Inputlterator2,
class Compare>
bool includes(Inputlteratorl firstl, Inputlteratorl lastl,
Inputlterator2 first2, Inputlterator2 last2,
Compare comp);

The following example initializes somset objects as sorted structures. You

could also take simple vectors, provided they are sorted. Since the example is re-
ferred to again in subsequent sections, it contains more than is strictly needed for

includes()

/I Excerpt fromk5/set_algorithms.cpp
#include <algorithm>

#include<set>

#include<showseq.h>

using namespace std;

int main () {
int v1[] = {1, 2, 3, 4}
int v2[] = {0, 1, 2, 3, 4, 5, 7, 99, 13}
int v3[] = {-2, 5, 12, 7, 33}
/* initialize sets with the vector contents default comparison obess<int>()
(implicit automatic sorting)sizeof v/sizeof *v1 yields the number of el-
ements inv.

*

set<int> s1(vl, vl + sizeof vl/sizeof *v1);

set<int> s2(v2, v2 + sizeof v2/sizeof *v2);

set<int> s3(v3, v3 + sizeof v3/sizeof *v3);
//s3 see next section

if(includes(s2.begin(), s2.end(),
s1.begin(), sl.end())) {

br_stl::showSequence(sl); 1l 1234
cout << " is a subset of ";
br_stl::showSequence(s2); 1 012345799

5.6.2 set_union

The functionset_union  builds a sorted structure which contains all the elements

that occur in at least one of two other sorted structeandS,. Thus, the union
of both structures is formed:
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S=5US

The precondition is that the receiving structure provides enough space, or that it
is empty and an insert iterator is used as the output iterator (see SBd@ién The
prototypes are:

template <class Inputlteratorl, class Inputlterator2,
class Outputlterator>
Outputlterator set_union(Inputlteratorl firstl,
Inputlteratorl lastl,
Inputlterator2 first2,
Inputlterator2 last2,
Outputlterator result);

template <class Inputlteratorl, class Inputlterator2,
class Outputlterator, class Compare>

Outputlterator set_union(Inputlteratorl firstl,
Inputlteratorl last1,
Inputlterator2 first2,
Inputlterator2 last2,
Outputlterator result,
Compare comp);

At the beginning, the result s&esult (see below) is empty. In the following
example, the output iterator must be an insert iterator. For this purpose, the function
inserter() , Which is described on padib, is included in the parameter list. It
returns an insert iterator. The sole useRekult.begin() as the output iterator
leads to errors. The reasons for this can be found in Sebt®a

set<int> Result; 1l empty set¢l, s2, s3 as above)
set_union(sl.begin(), sl.end(),

s3.begin(), s3.end(),
inserter(Result, Result.begin()));

br_stl::showSequence(sl); I 1234

cout << " united with ";

br_stl::showSequence(s3); I -2571233

cout << " yields ";

br_stl::showSequence(Result); i 21234571233

5.6.3 set_intersection

The functionset_intersection builds a sorted structure which contains all the
elements that occur in both of two other sorted struct§iesndS,. Thus, the inter-
section of both structures is formed:

S=5N8
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The conditions described in Sectiéré.6apply. The prototypes are:

template <class Inputlteratorl, class Inputlterator2,
class Outputlterator>
Outputlterator set_intersection(Inputlteratorl firstl,
Inputlteratorl lastl,
Inputlterator2 first2,
Inputlterator2 last2,
Outputlterator result);

template <class Inputlteratorl, class Inputlterator2,
class Outputlterator, class Compare>

Outputlterator set_intersection(Inputlteratorl firstl,
Inputlteratorl lastl,
Inputlterator2 first2,
Inputlterator2 last2,
Outputlterator result,
Compare comp);

In order to delete the old resultdear() is called. Otherwise, they would be
displayed again.
Result.clear(); I empty the set
set_intersection(s2.begin(), s2.end(),

s3.begin(), s3.end(),
inserter(Result, Result.begin()));

br_stl::showSequence(s2); I 012345799
cout << " intersected with ";

br_stl::showSequence(s3); 1l -2571233
cout << " yields ";

br_stl::showSequence(Result); 1 57

5.6.4 set_difference

The functionset_difference builds a sorted structure which contains all the ele-
ments that occur in the first sorted structSfe but not in the second sorted structure
Ss. Thus, the differencé; — S, of both structures is formed, which is also written

assSi \ Se. The conditions described in Sectibré.6apply. The prototypes are:

template <class Inputlteratorl, class Inputlterator2,
class Outputlterator>
Outputlterator set_difference(Inputlteratorl firstl,
Inputlteratorl last1,
Inputlterator2 first2,
Inputlterator2 last2,
Outputlterator result);
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template <class Inputlteratorl, class Inputlterator2,
class Outputlterator, class Compare>
Outputlterator set_difference(Inputlteratorl firstl,

Inputlteratorl last1,
Inputlterator2 first2,
Inputlterator2 last2,
Outputlterator result,

Compare comp);

The example follows the above pattern:

Result.clear();
set_difference(s2.begin(), s2.end(),
sl.begin(), sl.end(),
inserter(Result, Result.begin()));

br_stl::showSequence(s2); 1 012345799
cout << " minus ";

br_stl::showSequence(sl); 1 1234

cout << " yields ";

br_stl::showSequence(Result); 1 05799

5.6.5 set_symmetric_difference

The functionset_symmetric_difference
tains all the elements that occur either in the first strucjrer in a second sorted

structureSs,, but not in both. Thus, the symmetric difference of both structures is
formed, which is also called ‘exclusive-or.” The symmetric difference can be ex-
pressed using the previously introduced operations:

S = (81 — S2) U(Ss— S1)

S =(S1US8) —(S2N5y)
The conditions described in Sectiérb.6apply. The prototypes are:

template <class Inputlteratorl, class Inputlterator2,

class Outputlterator>

Outputlterator set_symmetric_difference(

Inputlteratorl firstl,
Inputlteratorl lastl,
Inputlterator2 first2,
Inputlterator2 last2,
Outputlterator result);

template <class Inputlteratorl, class Inputlterator2,

class Outputlterator, class Compare>

Outputlterator set_symmetric_difference(

builds a sorted structure which con-
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Inputlteratorl firstl,
Inputlteratorl lastl,
Inputlterator2 first2,
Inputlterator2 last2,
Outputlterator result,
Compare comp);

The last example of this kind shows the symmetric difference:
Result.clear();

set_symmetric_difference(s2.begin(), s2.end(),
s3.begin(), s3.end(),
inserter(Result, Result.begin()));

br_stl::showSequence(s2); 1 012345799

cout << " exclusive or "

br_stl::showSequence(s3); I -2571233

cout << "yields ";

br_stl::showSequence(Result); 1 201234123399

5.6.6 Conditions and limitations

It was mentioned on pade34that the algorithms introduced in this section are only
to a certain extent suitable for set operations. The reason is that the output iterator
must refer to a container that already has enough space. When there is insui tip :nt
space, using an insert iterator does not always make sense.

Let us consider the following example in which the intersection of two sorted
structuressl andv? is to be found and stored in a result vectesult . We have
three possible cases:

1. result provides enough space for the result.
2. result lacks space.

3. result lacks space at the beginning, but an insert iterator is used.

/I Case 1: everything OK

#include<algorithm>

#include<vector>

#include<showseq.h>

#include<iterator>  // for case 3lfack_insert_iterator )
using namespace std;

int main () {
vector<int> v1(4);
vector<int> v2(5);
vector<int> result(4,0);
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tip

v1[O]
v2[0]

2; vi[1]
1; v2[1]

13;
13; v2[4] = 43;

4; v1[2]
2; v2[2]

9; v1[3]
9; v2[3]

vector<int>:iterator last =
set_intersection (v1.begin(), vl.end(),
v2.begin(), v2.end(),
result.begin());
br_stl::showSequence(result); I 29130

cout << "only the interesting range: \n";
vector<int>:iterator temp = result.begin();
while(temp = last)
cout << *temp++ << '} 1 2913
cout << endl;

Thelast iterator indicates the position after the last element displayed, so that
the output can be limited to the interesting range.

/I Case 2resultl istoo small:
vector<int> result1(1,0);
last = set_intersection (v1.begin(), vl.end(),
v2.begin(), v2.end(),
resultl.begin());

Here, the result range is too small, so that the program crashes, or worse, the
memory area following the result vector is overwritten. This mistake cannot be
picked up by using a vector with index check (see Secdidp because only point-
ers are used. Also, the attempt to generate space by using an insert iterator does not
lead to a satisfying result:

/I Case 3result2 istoo small, but an insert iterator is used
vector<int> result2(1,0);
back_insert_iterator<vector<int> > where(result2);
set_intersection (v1.begin(), vl.end(),
v2.begin(), v2.end(),
where);
br_stl::showSequence(result2); I 02913

The insert iterator appends the elements at the end without considering whether
there is still enough space — it simply does not know any better. Given these three
cases, it is evident that set operations on sorted structures make sense only under
certain conditions:

e Standard containers from Chap&ector |, list , deque

— The result container provides enough space. The disadvantage is that after the
end of the result sequence, there are still old values in the container if the space
is more than sufficient.

— The output iteratowhere must not be identical neither withi.begin()  nor
with v2.begin()
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— The result container is empty. In this case, an insert iterator is to be used as the
output iterator.

e Associative containers from Sectidv: set , map

An insert iterator has to be used in any case. The contents of an element must
not be changed directly, that is, via a reference to the element. This would be the
behavior of a non-inserting output iterator, and the ordering within the container
and therefore its integrity would be violated.

Thus, some serious thinking has to be done. If the result container is not empty,
but also does not provide sufficient space, there is no elegant solution. The reason for
this ‘flaw’ lies in the requirement that the algorithms must also be able to work on
simple C-like arrays without being changed. The best thing would be to concentrate
only on the result without caring about available space in containers and iterators to
be employed. Chaptérintroduces set operations without the above restrictions.

Heap algorithms

The priority queue described in SectidrB is based on a binary heap. Before we
describe the heap algorithms of the STL, let us define the most important features of
a heap:

e The N elements of a heap lie in a continuous array on the positions\0-tol. It
is assumed that random access is possible.

e The kind of arrangement of the elements in the array corresponds to a complete
binary tree in which all levels are occupied by elements. The only possible ex-
ception is the lowest level in which all elements appear on the left-hand side.
Figure5.2 shows the array representation of a héapf 14 elements, where the
circled numbers represent the array indiaest the element values). Thus, the el-
ementH 0] is always the root, and each eleméfitj], (; > 0) has a parent node

H[(j —1)/2].

ONENO
HHe 0o e @

Figure 5.2: Array representation of a heap (number = array index).



142

STANDARD ALGORITHMS

e Each elementd[j] is assigned a priority which is greater than or equal to the
priority of the child noded7[2; + 1] and H[2j + 2]. For simplicity, we assume
that here and in the following discussion large numbers mean high priorities. This
could, however, well be the other way round, or completely different criteria might
determine the priority. Figur®.3 shows examples aglement valuesf a heap:

H|[0] equals 99, and so on.

\
@
@ ©® @O O @ @

Figure 5.3: Array representation of a heap (number = element value).

Please note that the heap is not completely sorted; we are interested only in the
priority relation between parent nodes and corresponding child nodes.

An arrayH of N elements is a heap if and onlyAf[(j — 1) /2] > H[j] holds for
1 < j < N. This means automatically thaf[0] is the greatest element. A priority
gueue simply removes the topmost element of a heap; subsequently, the heap is
restructured, that is, the next greatest element moves to the top. With reference to
Figures5.2and5.3, this would be element number 2 with the value 56.

The STL provides four heap algorithms which can be applied to all containers
that can be accessed with random access iterators:

push_heap() adds an element to an existing heap.

pop_heap() removes the element with the highest priority.

make_heap() arranges all elements in a range in such a way that the range rep-
resents a heap.

sort_heap()  converts a heap into a sorted sequence.

As usual in the STL, these algorithms do not have to know any details about the
containers. They are merely passed two iterators that mark the range to be processed.
less<T> is predefined as the priority criterion, but a different criterion might be re-
quired. Therefore, there is an overloaded variation for each algorithm which allows
passing of a comparison object. To show the internal functioning, possible imple-
mentations are also shown (compare with the STL of your system).
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5.7.1 pop_heap

The functionpop_heap() removes one element from a heap. The rdfige,
last) isto be considered a valid heap. The prototypes are:

template <class RandomAccesslterator>
void pop_heap(RandomAccesslterator first,
RandomAccesslterator last);

template <class RandomAccesslterator, class Compare>
void pop_heap(RandomAccesslterator first,
RandomAccesslterator last,
Compare comp);

The ‘removal’ consists only of the fact that the value with the highest priority,
which stands at positiofirst  is swapped with a value at positiolagt —1). Sub-
sequently, the ranggirst, last-1) is converted into a heap. The complexity
of pop_heap() is O(log(last — first)).

/I k5/heap.cpp
#include<algorithm>
#include<showseq.h>
#include<vector>
#include<iota.h>
using namespace std;

int main() {
vector<int> v(12); 1 container for heap
br_stl::iota(v.begin(), v.end(), 0); // enter0..11
br_stl::showSequence(v); 1l 01234567891011
/I create valid heap
make_heap(v.begin(), v.end()); // see below
br_stl::showSequence(v); 1l 11106895073142

/I display and remove the two numbers

/I with the highest priority:

vector<int>:iterator last = v.end();

cout << *v.begin() << endl; I 11
pop_heap(v.begin(), last--);

cout << *v.begin() << endl; I 10
pop_heap(v.begin(), last--);

It should be noted that the end of the heap is no longer indicatecebg()
but by the iteratotast . With regard to the heap propertieswthe range between
these two values is undefined.
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pop_heap implementation

A possible implementation fqrop_heap() shows how the top element is removed

by reorganizing the heap. We assume thatdivep() -functor behaves like the-
operator, i.e. the biggest number (= high priority) is at the top of the heap. Therefore
big numbers are light and small numbers, being at the bottom of the heap, are heavy.
If high priorities are represented Isynall numbers, however, the meaning of light
and heavy is reversed.

/I remove top element withop_heap(first, last--)
template<typename RandomAccesslterator, typename Compare>
void pop_heap(RandomAccesslterator first,
RandomAccessilterator last,
Compare comp) {
iterator_traits<RandomAccesslterator>::
difference_type size = last - first-1, // new size
index = 0O,
successor = 1;
assert(size >= 0);

/* The ‘removal’ is achieved by first putting the last element at the top position. The
element that was formerly first is saved at the last position. Saving it is certainly
not necessary fqgop_heap() , butitis cheap and very advantageous if we want
to sort the heap (see below).

Then the heap is reorganized by letting the first element sink to its correct place,
in the course of which first the lighter successors rise and then the sinking element
is inserted at the position where the successor came from.

*/
iterator_traitskRandomAccesslterator>::

value_type temp = *(last - 1); // save last element
*(last-1) = *first; 1l copy first element to the end

while(successor < size) {
/I perhaps the other successor is more important (i.e. bigger)?
if(successor+l < size
&& comp(*(first+successor), *(first+successor+1)))
++successor;

if(comp(temp, *(first+successor))) {
/I follow up
*(first+index) = *(first+successor);
index = successor;
successor = 2*index+1;

}

else
break;
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/I insert element at now free position
*(first+index) = temp;

If no compare object is passed, we assugng<> :

template<typename RandomAccesslterator>
void pop_heap(RandomAccesslterator first,
RandomAccesslterator last)
pop_heap(first, last, less<
iterator_traitscRandomAccesslterator>::value_type>());

push_heap

The functionpush_heap() adds an element to an existing heap. As the prototypes
show, the function is passed only two iterators and, if needed, a comparison object.
The element to be added does not appear:

template <class RandomAccesslterator>
void push_heap(RandomAccesslterator first,
RandomAccesslterator last);

template <class RandomAccesslterator, class Compare>
void push_heap(RandomAccesslterator first,
RandomAccessilterator last,
Compare comp);

The precondition must apply that the rarjfjest, last-1) is a valid heap.
push_heap() does not care about the value to be added. Therefore, the value to
be added to the heap [weviouslyentered at its positioniast - 1 ). The sub-
sequent call opush_heap(first, last) ensures that after the call, the range
[first, last) is a heap. The handling of this function is somewhat long-winded,
but it is only intended as an auxiliary function and it is very fast. The complexity of
push_heap() is O(log(last — first)). At this point, two numbers are added to the
sample heap, as described above:

/I enter an ‘important number’ (99)
*last = 99;
push_heap(v.begin(), ++last);

/I enter an ‘unimportant number’ (1)
*last = -1;
push_heap(v.begin(), ++last);

/I display of the complete heap
/I (no complete ordering, only heap condition!)
br_stl::showSequence(v); 1 999678502314-1
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During insertion, care must be taken thatt does not run pastend() . Be-
cause during removal the value with the highest priority is always placed on top, the
tip outputis sorted:

/I display of all numbers by priority:

while(last !'= v.begin()) {
cout << *v.begin() << '
pop_heap(v.begin(), last--);

}

cout << endl; I 9998765432101

push_heap implementation

Inapush_heap() implementation the new element is first inserted at positisin
(see above). From there it goes up to its correct place:

/I Adding an elementalue by
/I a) placing it at the the last positioHast = value
/I b) reorganizing the heap withush_heap(first, ++last)

template<typename RandomAccesslterator, typename Compare>
void push_heap(RandomAccesslterator first,
RandomAccessilterator last,
Compare comp) {

/* The heap is reorganized by letting the last element rise to its correct place, in the
course of which first the heavier predecessor sinks and then the rising element is
inserted at the position where the predecessor left. The precondition must apply
that the rangéfirst, last-1) is a valid heap.

*/

assert(first < last);
iterator_traitskRandomAccesslterator>::
difference_type index = last - first -1,
predecessor = (index-1)/2;

iterator_traitscRandomAccesslterator>::
value_type temp = *(first+index); 1l save element

while(index != 0 1 root not yet reached
&& comp(*(first+predecessor), temp)) {
/I let predecessor sink
*(first+index) = *(first+predecessor);
index = predecessor;
predecessor = (index-1)/2;
}
*(first+index) = temp;

}

/I without compare object:
template<typename RandomAccesslterator>
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void push_heap(RandomAccesslterator first,
RandomAccesslterator last)
push_heap(first, last, less<
iterator_traitscRandomAccesslterator>::value_type>());

}

5.7.3 make heap

make_heap() ensures that the heap condition applies to all elements inside a range.
The prototypes are:

template <class RandomAccesslterator>
void make_heap(RandomAccesslterator first,
RandomAccesslterator last);

template <class RandomAccesslterator, class Compare>
void make_heap(RandomAccessilterator first,
RandomAccesslterator last,
Compare comp);

The complexity is proportional to the number of elements betwiestn and
last . The example on paget3shows the application to a vector as container:

make_heap(v.begin(), v.end()); Il see pagé43

make_heap implementation

An implementation formake_heap() is easy to write usingush_heap() , for
example:

RandomAccesslterator temp = first + 1;
while(temp <= last) push_heap(first, temp++, comp);

The complexity isO(nlogn). However, it is possible to make it faster. Only a
linear effort is necessary if the heap is constructed bottom up. Beginning with the
second level from the bottom, all nodes are compared to their successors. If a suc-
cessor is greater than the investigated node, their values are exchanged. After this the
next level is entered. This process is nothing else than visiting all nodes from the mid-
dle to the first in reverse order. That seems to yield a compléXitylog n) because
after a swap the corresponding subtree has to be checked.dBut
show that the asymptotical complexity is in fa@efn).

/' make a heap out of an unsorted array
template<typename RandomAccesslterator, typename Compare>
void make_heap(RandomAccesslterator first,

RandomAccessiterator last,

Compare comp) {

iterator_traits<sRandomAccesslterator>::
difference_type N = last-first, I size of heap
i, subroot, left, right, largest;
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for(i = N/2-1; i >=0 ; --i) { /I begin with the middle element
largest = i; 1! top of subtree to be checked
do // The loop corresponds to the recursive algorithm Heapify() in
{ ) Sec. 7.2.
subroot = largest; I assumption to be checked
left = 2*subroot+1; /i index of left subtree, if it exists
right = left +1,; 1! index of right subtree, if it exists

/I compute position of largest element

if(left<N && comp(*(first+subroot),*(first+left)))
largest = left;

else largest = subroot;

if(right<N && comp(*(first+largest),*(first+right)))
largest = right;

if(largest !'= subroot) Il swap, if heap-condition is violated
iter_swap(first+subroot, first+largest);
} while(subroot != largest); // check heap property for next level

}
}

/I without compare object:
template<typename RandomAccesslterator>
void make_heap(RandomAccesslterator first,
RandomAccesslterator last)  {
make_heap(first, last, less<
iterator_traitskRandomAccesslterator>::value_type>());

}

5.7.4 sort_heap

sort_heap()  converts a heap into a sorted sequence. The sorting is not stable; the

complexity isO(N log N), when N is the number of elements to be sorted. The
prototypes are:

template <class RandomAccesslterator>
void sort_heap(RandomAccesslterator first,
RandomAccesslterator last);

template <class RandomAccesslterator, class Compare>
void sort_heap(RandomAccesslterator first,
RandomAccesslterator last,
Compare comp);

The sequence is sorted@scendingorder. This means that the elements of high
priority are placedt the endbf the sequence:

/I generate new valid heap of all elements
make_heap(v.begin(), v.end());
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/I and sort

sort_heap(v.begin(), v.end());

/I display of the completely sorted sequence
br_stl::showSequence(v);  // 1012345678999

sort_heap implementation and heapsort
With the help ofpop_heap() , an implementaion is easy to write:

/I Sort heap. High priorities (small numbers) lie at
/I the beginning when comp = less
template<typename RandomAccesslterator, typename Compare>
void sort_heap(RandomAccesslterator first,
RandomAccesslterator last,
Compare comp) {
/I To sort the heap, we successively remove the first element and
/I place it at the current end of the heap (this is dongap_heap() !)
while(last - first > 1)
pop_heap(first, last--, comp);  // remove

}

template<typename RandomAccesslterator>
void sort_heap(RandomAccesslterator first,
RandomAccesslterator last)  {
sort_heap(first, last, less<
iterator_traitscRandomAccesslterator>::value_type>());

An arbitrary container with random access (e.g. a vector) can now easily be
sorted by converting it into a heap which after this is sorted:

/I Sort arbitrary vector. Small numbers will be lying at the
/I beginning, if comp = less.
/I remark: This immotan STL algorithm!
template<typename RandomAccesslterator, typename Compare>
void Heapsort(RandomAccesslterator first,
RandomAccesslterator last,
Compare comp) {
make_heap(first, last, comp);
sort_heap(first, last, comp);

}

template<typename RandomAccesslterator>
void Heapsort(RandomAccesslterator first,
RandomAccesslterator last) {
make_heap(first, last);
sort_heap(first, last);
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On the average heapsort is slower than quicksort by a factor of about two. How-
ever, its complexityO(n log n) also in the worst case is much better than the worst
case complexity of quicksort (averaggn logn), worst case)(n?)). We will en-
counter further heap algorithms in Sectibh 2.

5.8 Minimum and maximum

The inline templatemin() andmax() return the smaller or the greater of two ele-
ments, respectively. In case of equality, the first element is returned. The prototypes
are:

template <class T>
const T& min(const T& a, const T& b);

template <class T, class Compare>
const T& min(const T& a, const T& b, Compare comp);

template <class T>
const T& max(const T& a, const T& b);

template <class T, class Compare>
const T& max(const T& a, const T& b, Compare comp);

The templatesnin_element() andmax_element() return an iterator to the
smallest (or greatest) element of an inteffiedt, last) . In case of equality of
the iterators, the first one is returned. The complexity is linear. The prototypes are:

template <class Forwardlterator>
Forwardlterator min_element(Forwardlterator first,
Forwardlterator last);

template <class Forwardlterator, class Compare>

Forwardlterator min_element(Forwardlterator first,
Forwardlterator last,
Compare comp);

template <class Forwardlterator>
Forwardlterator max_element(Forwardlterator first,
Forwardlterator last);

template <class Forwardlterator, class Compare>

Forwardlterator max_element(Forwardlterator first,
Forwardlterator last,
Compare comp);
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5.9 Lexicographical comparison

The lexicographical comparison is used to compare two sequences which can even
be of different lengths. The function returttee when the first sequence is lexi-
cographically smaller. Both sequences are compared element by element, until the
algorithm encounters two different elements. If the element of the first sequence is
smaller than the corresponding element of the second sequerceis returned.

If one of the two sequences has been completely searched before a different
element is found, the shorter sequence is considered to be smaller. The prototypes
are:

template <class Inputlteratorl, class Inputlterator2>

bool lexicographical_compare(Inputlteratorl firstl,
Inputlteratorl lastl,
Inputlterator2 first2,
Inputlterator2 last2);

template <class Inputlteratorl, class Inputlterator2,
class Compare>
bool lexicographical_compare(Inputlteratorl firstl,
Inputlteratorl lastl,
Inputlterator2 first2,
Inputlterator2 last2,
Compare comp);

This allows alphabetical sorting of character strings, as shown in the example:

/I k5/lexicmp.cpp
#include<algorithm>
#include<iostream>
#include<functional>
using namespace std;

char textl[] = "Arthur";
int lengthl = sizeof(textl);
char text2[]] = "Vera";
int length2 = sizeof(text2);

int main () {
if(lexicographical_compare(
textl, textl + lengthl,
text2, text2 + length2))
cout << textl << " comes before " << text2 << endl;
else
cout << text2 <<

comes before " << textl << endl;

if(lexicographical_compare(
textl, textl + lengthl,
text2, text2 + length2,
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5.10

greater<char>())) I reverse sorting order
cout << textl << " comes after " << text2 << endl;
else
cout << text2 << " comes after " << textl << endl;

}

The simplechar arrays are chosen on purpose. We ignore that objects of the
string  class can be compared in this way by means of<haperator. Lexico-
graphical sorting of the kind found in a phone book requires slightly more effort,
because, for example, umlauts and accented letters are considered to be equivalent
to the corresponding unaccented letters.

Permutations

A permutation originates from a sequence by exchanging two elements. (0, 2, 1) is
a permutation originated from (0, 1, 2). For a sequenc#& aflements, there exist
N!'= N(N—-1)(N—2)...2-1 permutations, that i8-2-1 = 6 in the above example:

0, 1,2),(0,2,1), (1,0,2), (L2, 0),(20,1), (2 1,0)

You can imagine the set of alV! permutations of a sequence in an ordered
form as above, with the ordering created either by means of tperator or with a
comparison objeatomp.

The ordering defines a unique sequence, so that the next or the previous permu-
tation is uniquely determined. The sequence is regarded as cyclic, that is, the per-
mutation following (2, 1, 0) is (0, 1, 2). The algorithmpgev_permutation() and
next_permutation() convert a sequence into the previous or next permutation,
respectively:

template <class Bidirectionallterator>
bool prev_permutation(Bidirectionallterator first,
Bidirectionallterator last);

template <class Bidirectionallterator,
class Compare>
bool prev_permutation(Bidirectionallterator first,
Bidirectionallterator last
Compare comp);

template <class Bidirectionallterator>
bool next_permutation(Bidirectionallterator first,
Bidirectionallterator last);

template <class Bidirectionallterator,
class Compare>
bool next_permutation(Bidirectionallterator first,
Bidirectionallterator last
Compare comp);
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When a permutation is found, the return valugri® . Otherwise, it is the end
of a cycle. Thenfalse is returned and the sequence is converted into the small-
est possible one (withext_permutation() ) or the greatest possible one (with
prev_permutation() ), according to the sorting criterion. For example:

/I k5/permute.cpp
#include<algorithm>
#include<showseq.h>
#include<vector>
#include<iota.h>
using namespace std;

long factorial(unsigned n) {
long fac = 1,
while(n > 1) fac *= n--;
return fac;

}

int main() {
vector<int> v(4);
br_stl::iota(v.begin(), v.end(), 0); I 0123
long fac = factorial(v.size());

for(int i = 0; i < fac; ++i) {
if(Iprev_permutation(v.begin(), v.end()))
cout << "Start of cycle:\n";
br_stl::showSequence(v);

}

This example first produces the message ‘Start of cycle,’ because the initializa-
tion of the vector with (0, 1, 2, 3) does not allow determination pfeviouspermu-
tation without exceeding the cycle. Therefore, the greatest sequence after sorting is
produced next, namely (3, 2, 1, 0). The ‘Start of cycle’ message could be prevented

by substitutingorev_permutation() with next_permutation() in the exam-
ple, or alternatively by passing a comparison obigetter<int>() as the third
parameter.

5.11 Numeric algorithms

These algorithms describe general numerical operations. Access to these algorithms
is possible viatinclude<numeric>

5.11.1 accumulate

This algorithm adds all values of an iteratori fromfirst tolast to an initial
value. If, instead of the addition, another operation is to be used, there are overloaded
variations which are passed this operation as the last parameter. The prototypes are:
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template<class Inputlterator, class T>
T accumulate(Inputlterator first,
Inputlterator last,
T init);
template<class Inputlterator, class T,
class binaryOperation>
T accumulate(Inputlterator first,
Inputlterator last,
T init,
binaryOperation binOp);
The following example calculates the sum and the product of all elements of a
vector. In these cases, 0 or 1 have to be used as initial valugstfor Since in the

example the vector is initialized with the sequence of natural numbers, the product
equals the factorial of 10. The functmultiplies is described on pag#s.

/I k5/accumulate.cpp
#include<iota.h>
#include<numeric>
#include<vector>
using namespace std;

int main() {
vector<int> v(10);
br_stl::iota(v.begin(), v.end(), 1);

cout << "Sum =" I init +> Vi
<< accumulate(v.begin(), v.end(), 0) // 55
<< endl;

cout << "Product = "
<< accumulate(v.begin(), v.end(), 1L, //init T, ve

multiplies<long>()) 1 3628800
<< endl;

5.11.2 inner_product

This algorithm adds the inner product of two containeendwv, which will mostly
be vectors, to the initial valuieit

Result =init  + 27 Vi - U

Instead of addition and multiplication, other operations may be chosen as well.
The prototypes are:

template<class Inputlteratorl, class Inputlterator2,
class T>
T inner_product(Inputlteratorl firstl,
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Inputlteratorl lastl,
Inputlterator2 first2,
T init);

template<class Inputlteratorl, class Inputlterator2,
class T,
class binaryOperationl, class binaryOperation2>
T inner_product(Inputlteratorl first1,
Inputlteratorl lastl,
Inputlterator2 first2,
T init,
binaryOperationl binOp1,
binaryOperation2 binOp2);

In a Euclideam-dimensional spac&™, the length of a vector is defined as the
root of the inner product of the vector with itself. The example calculates the length
of a vector inR*. The value ofnit must again be 0.

/I k5/innerproduct.cpp
#include<numeric>
#include<vector>
#include<cmath>
#include<iota.h>
using namespace std;

/I functor for calculating the square of a difference (see below)
template<class T>
struct difference_square {
const T operator()(const T& X, const T& y) {
const T d =x -y,
return d*d;

h

int main() {
int dimension = 4;
vector<int> v(dimension,1);

cout << "Length of vector v = "
<< sgrt((double) inner_product(v.begin(), v.end(),
v.begin(), 0))
<< endl;

/* In order to show the application of other mathematical operators, the following
part of the example calculates the distance between two points. Besides the func-
tors of Sectionl.6.3 user-defined functors are allowed as well, such as, in this
case, the functadifference_square

*/
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/I 2 points p1 and p2
vector<double> pl1(dimension,1.0),
p2(dimension);

br_stl::iota(p2.begin(), p2.end(), 1.0); // arbitrary vector

cout << "Distance between pl and p2 ="
<< sqrt( inner_product(pl.begin(), pl.end(),
p2.begin(), 0.0,
plus<double>(),
difference_square<double>()))
<< endl;

}

The first operator is the addition (summation), the second operator the quadrature
of the differences:

Distance =/3, (v; — u;)?
5.11.3 partial_sum

Partial summation functions in the same wayaasumulate() , but the result of

each step is stored in a result container given bydhelt iterator. The prototypes
are:

template<class Inputlterator, class Outputlterator>

Outputlterator partial_sum(Inputlterator first,
Inputlterator last,
Outputlterator result);

template<class Inputlterator, class Outputlterator,
class binaryOperation>
Outputlterator partial_sum(Inputlterator first,
Inputlterator last,
Outputlterator result,
binaryOperation binOp);

The example shows both variations. The last number of each sequence corre-
sponds to the result aiccumulate()  in the earlier example.

/I k5/partialsum.cpp
#include<numeric>
#include<vector>
#include<showseq.h>
#include<iota.h>
using namespace std;

int main() {
vector<long> v(10), ps(10);
br_stl::iota(v.begin(), v.end(), 1); // natural numbers
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cout << "vector ="
br_stl::showSequence(v); I 12345678910

partial_sum(v.begin(), v.end(), ps.begin());
cout << "Partial sums ="
br_stl::showSequence(ps); I 13610152128364555

/I Sequence of factorials
cout << "Partial products = ";
partial_sum(v.begin(), v.end(), v.begin(),
multiplies<long>());
/I 12624120 720 5040 40320 362880 3628800
br_stl::showSequence(v);

5.11.4 adjacent_difference

This algorithm calculates the difference between consecutive elements of a container
v and writes the result into a result contairepointed to by theesult iterator.

Since there is exactly one difference value less than there are elements, the first
element is retained. If the first element has the index 0, the following holds:

€p = Vo
e =v; — V1,1 >0

Besides calculation of differences, other operations are possible. The prototypes
are:

template<class Inputlterator, class Outputlterator>

Outputlterator adjacent_difference(Inputlterator first,
Inputlterator last,
Outputlterator result);

template<class Inputlterator, class Outputlterator,
class binaryOperation>
Outputlterator adjacent_difference(Inputlterator first,
Inputlterator last,
Outputlterator result,
binaryOperation binOp);

The example shows both variations. In the first one, the differences are calcu-
lated; in the second one, a sequence of Fibonacci numbers is calculated. (Leonardo
of Pisa, called Fibonacci, was an Italian mathematician who lived 1180-1240.)

/I k5/adjacent_difference.cpp
#include<numeric>
#include<vector>
#include<iota.h>
#include<showseq.h>

using namespace std;
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int main() {
vector<long> v(10), ad(10);
br_stl::iota(v.begin(), v.end(), 0);

cout << "vector =5
br_stl::showSequence(v); I 0123456789

cout << "Differences ="
adjacent_difference(v.begin(), v.end(), ad.begin());
br_stl::showSequence(ad); 1 0111111111

/I Fibonacci numbers

vector<int> fib(16);

fib[0] = 1; 1 initial value

/* One initial value is sufficient here because the first value is written to the first
position (see formula, = vo on the previous page) and the result iterator which
is shifted by one position (see formula= v; — v;—1 ). Therefore, after the first
step of the algorithnfjb[1]  equals 1.

*/

cout << "Fibonacci numbers = ";

adjacent_difference(fib.begin(), fib.end()-1,

(fib.begin()+1), plus<int>());

br_stl::showSequence(fib);
/I 1123581321345589 144233377610 987

If, instead of the difference, the sum of both predecessors is used, the result
container is filled with a sequence of Fibonacci numbers. Fibonacci asked himself,
how many pairs of rabbits there would be afteyears, if, beginning with the sec-
ond year, each couple generates another couple. The fact that rabbits eventually die
was ignored for the purpose of this problem. The answer to this question is that the
number of rabbits in the year is equal to the sum of the numbers of the years
n — 1 andn — 2. Fibonacci numbers play an important role in information science
( ) ). It should be noted that at the beginning of the
construction of the sequence, tlegult  iterator must bdib.begin()+1
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Set operations
on associative
containers

Summary:This chapter presents operations which are not included in the STL and
which overcome the limitations described in Sectiof6 This has its price: these
algorithms no longer work on simple C arrays and thus do not satisfy the require-
ments put on their algorithms by the authors of the STL. The price, however, is not too
high, because algorithms and data structures should match. Thus, the data structures
suitable for set operations are not necessarily sorted C arrays, but sets, represented,
for example, by theet class.

The algorithms in this chapter have a further advantage: they work not only on the
sorted set containers of the STL, but also on unsorted associative containers as de-
scribed in Chapter. Then, they are not slower than the set operations of Section
5.6. The algorithms of this chapter are not designed for multisets, but they can be
extended accordingly.

The names of the algorithms differ from those of the STL because they lack the
set prefix and have an upper case initial letter. All algorithms and examples in Part
[, which starts with this chapter, are also available via the Internet (seeZ¥aje

The set_type placeholder for the data type used in the following templates
applies to all set containers that provide the following methods:

begin()
end()
find()
insert()
swap()

In addition, just the public type
set_type::const_iterator

must be available, by means of which elements of the set can be accessed. Obviously,
the semantics of the methods and the iterator type must conform to the STL.
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6.1

6.2

Subset relation

This algorithm determines whether a setis contained in a sefl . Each element of
s2 is checked to see whether it is includedsirn

/I include/setalgo.h
#ifndef SETALGO_H
#define SETALGO_H
namespace br_stl {

template<class set_type>
bool Includes(const set type& sl1, const set type& s2) {

/I 1ss2 contained irs1?

if(&sl == &s2) 1 save time if the sets are identical

return true;

/* The check for identity must not be confused with the checkefguality which
would have to be formulated #f§s1 == s2)... ! The identity check is very
fast, because only addresses are compared. The equality check can take a long
time, because the sets must be compared element by element.

*/

typename set_type:.const_iterator i = s2.begin();

while(i = s2.end()) {
if(sl.find(*i++) == sl.end()) I not found
return false;

}

return true;

The complexity iSO(N; log N7) for the STL classet andO(N-) for the class
HSet in Chapter7. Here and in the following sectiond}; and N, denote the number
of elements irs1 ands2.

The check for identity of the arguments saves time because the loop is not
executed. A further possible optimization is to run the loop on the smaller of
the two sets (see Exercise at the end of the chapter). Then, the complexity is
O(min(Ny, Ny)log(max (N1, N3))) for the STL classset and O(min(Ny, N3))
for the clasg1Set of Chapter7.

Union

This and the following algorithms have three sets as parameters, with the third pa-
rametemesult  containing the result after the end of the algorithm. When calling
the function,result  can be identical witrs1 or s2, so a temporary set is used

to store the intermediate results. In order to save an assignesaiftt = temp

which is expensive when many elements are involved, the member fusatim()
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of the container is employedlnion() initializes temp with s2 and adds all the
elements of1.

template<class set_type>
void Union(const set_type& sl, const set_type& s2,
set_type& result) {
set_type temp(s2);
if(&sl = &s2) {
typename set_type:.const_iterator i = sl.begin();
while(i = sl.end()
temp.insert(*i++);
}
temp.swap(result);

}

Theif condition is used for speed optimization. If both sets are identical, there
is no need for the loop. The complexity @& N log No + N; log Ny) for the STL
classset andO(N» + Ny) for the classiSet in Chapter7. The first term of the sum
refers to the initialization ofemp, the second to the loop.

Intersection

Thelntersection() algorithm begins with an empty container and inserts all the
elements that are contained bottsinand ins2.

template<class set_type>
void Intersection(const set_type& sl1, const set_type& s2,
set_type& result) {
set_type temp;
typename set_type::const_iterator il = sl.begin(), i2;

/I An identity check makes no sense, because in case
/I of identity,temp must be filled anyway.

while(il !'= sl.end()) {
i2 = s2.find(*il++);
if(i2 = s2.end())
temp.insert(*i2);
}
temp.swap(result);

}

The complexity isO(N; log Ny) for the STL classet andO(N,) for the class
HSet (Chapter7). The factorV; refers to the loop, the rest to thied()  operation.
The functioninsert()  is only called a maximum ofmin(/N, N2)) times and is
therefore not considered in the complexity analysis.

Here too, a gain in speed could be achieved by running the loop on the smaller
of the two sets.



164 SET OPERATIONS ON ASSOCIATIVE CONTAINERS

6.4 Difference

Here, all the elements are inserted imoult which are contained in1, but not
ins2.

template<class set_type>
void Difference(const set_type& s1, const set_type& s2,
set_type& result) {
set_type temp;
typename set_type::const_iterator i = sl.begin();

if(&s1 != &s2)
while(i = sl.end()) {
if(s2.find(*i) == s2.end()) /I not found
temp.insert(*i);
++i;
}

temp.swap(result);

}

The complexity isO (N7 log(max(Ny, N2))) for the STL classet andO(Vy)
for the clasHSet (Chapter7). Calculation of the maximum is necessary, because
for a small ses2, very many elements afl must be inserted inteemp, or for a
large N,, the number ofsert()  operations may also be small.

The check for non-identity&s1 != &s2 ) saves the loop in case of identical
arguments and immediately returns an empty set. Initializingrap with s1 and
deletion of all elements containeds2 does not lead to a gain in time, because the
possible savings in the loop are compensated by the cost of the initialization. Some
time could, however, be saved by choosing the smaller set for the loop (see Exercise
6.1).

6.5 Symmetric difference

This algorithm finds all the elements that occusinor in s2, but not in both. The
symmetric difference is equivalent tel — s2) U (s2 — s1) (implemented here) or
(s1Us2) — (s1ns2).

template<class set_type>
void Symmetric_Difference(const set_type& s1,
const set_type& s2,
set_type& result) {
set_type temp;
typename set_type::const_iterator i = sl.begin();

if&sl = &s2) {

while(i = sl.end()) {
if(s2.find(*i) == s2.end()) // not found
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temp.insert(*i);
++i;
}
i = s2.begin();
while(i = s2.end()) {
if(sl.find(*i) == sl.end()) //
temp.insert(*i);
++i;
}
}
temp.swap(result);
}
} /I namespace br_stl
#endif //  File setalgo.h
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not found

The complexity iSO((N; + Nz) log(max(Ny, No))) for the STL classet and
O(N; + Ny) for the clasHSet (Chapter7). The check for non-identity&s1 !=
&s?) saves the loop in case of identical arguments and directly returns an empty set.

Example

This example contains a compiler swit6iTL_set which allows you to compile

the program both with the set container of the STL and with the fat$et con-
tainer (Chapter). This shows the compatibility of the algorithms with two different
set implementations. The switch controls not only the type definitions, but also the
inclusion of a clas$lashFun used for the creation of a function object for the ad-
dress calculationHashFun serves as standard hash-function object, provided that
no different object is required, and is stored in theliiéeshfun.h

/I include/hashfun.h

/I Standard function object, see Chapter
#ifndef HASH_FUNCTION_H

#define HASH_FUNCTION_H

namespace br_stl {

template<class T>
class HashFun {
public:
HashFun(long prime=1009) : tabSize(prime) {}
long operator()(T p) const {
return long(p) % tabSize;

}

long tableSize() const { return tabSize;}

private:
long tabSize;
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¥
} /I namespace br_stl
#endif

In order not to repeat the example in Chaptgeit is recommended that you try
it out again after reading the next chapter, commenting out the macro

I/ #define STL_set

This does not change the behavior of the program, only the underlying implementa-
tion — and with this, the running time.

/I k6/mainset.cpp

/I Example for sets with set algorithms

/I alternatively forset (STL) orHSet (hash) implementation
#include<showseq.h>

#include<setalgo.h>

/I compiler switch (see text)

#ifdef STL_SET

#include<set>

char msg[] = "std::set chosen";
#else

#include<hset.h>
#include<hashfun.h>

char msg[] = "br_stl::HSet chosen";
#endif

using namespace std;

int main() {
/I type definition according to selected implementation
#ifdef STL_set
/I default setting for comparisotess<int>
typedef set<int> SET,;
#else
typedef br_stl::HSet<int, br_stl::HashFun<int> > SET;
#endif

SET Setl, Set2, Result;

int i;

for(i = 0; i < 10; ++i) Setl.insert(i);
for(i = 7; i < 16; ++i) Set2.insert(i);

/I display
br_stl::showSequence(Setl);
br_stl::showSequence(Set2);
cout << "Subset:\n";
cout << "Includes(Setl, Set2) = "
<< br_stl::Includes(Setl, Set2) << endl;
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cout << "Includes(Setl, Setl) = "
<< br_stl:Includes(Setl, Setl) << endl;

cout << "Union:\n";
br_stl::Union(Setl, Set2, Result);
br_stl::showSequence(Result);

cout << "Intersection:\n";
br_stl::Intersection(Setl, Set2, Result);
br_stl::showSequence(Result);

cout << "Difference:\n";
br_stl::Difference(Setl, Set2, Result);
br_stl::showSequence(Result);

cout << "Symmetric difference:\n";
br_stl::Symmetric_Difference(Setl, Set2, Result);
br_stl::showSequence(Result);

cout << "Copy constructor:\n";
SET newSet(Result);
br_stl::showSequence(newSet);

cout << "Assignment:\n";
Result = Setl;
br_stl::showSequence(Setl);
br_stl::showSequence(Result);

167






Fast associative
containers

7.1

Summary: This chapter introduces associative containers which, because of hash-
ing, allow significantly faster access times than the sorted associative containers of
the STL. The chapter concludes with suitable overloaded operators for set opera-
tions on these containers.

As already mentioned in Sectigh4, containers of this kind were not incorporated

into the C++ standard for reasons of time, although the STL developers had made
a corresponding proposal. Therefore, there is no standard for this kind of container.

On the other hand, under certain conditions which will be explained below, access to

the elements of these containers is independent of the number of elements, making
it particularly fast O(1)), so that containers of this kind are frequently employed.

This is reason enough to discuss hashing more extensively and, in particular, to
present a solution based on the elements of the STL. Most compiler producers offer
hash-based containers in their libraries; however they are not (yet) compatible with
the STL. To make the underlying concepts as simply as possible, no reference is
made to a vendor’s special implementation. By omitting less important functions,
such as the one for automatic adaptation to container size, the description can be
made even clearer.

Applications, for example a sparse 1 000 000L 000 000 matrix with fast ac-
cess, will be shown in subsequent chapters. Matrices with large index ranges occur
in simulations of networks (gas and electricity supplies, telecommunication, and so
on). Compared with the sorted associative containers of the STL, the solutions pre-
sented are not only faster, but also more economical in their memory consumption.

Fundamentals

Sometimes, the sorting provided by the associative containers is not needed. The
order of the elements of a set or map need not be defined. If we do not implement
sorting we can calculate the address of a sought element directly from the key. For
example, a compiler builds a symbol table whose elements must be able to be ac-
cessed very quickly. The complexity of the acces9($), independent of the num-
ber N of elements in the table.
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7.1.1

The preconditions are that the address can be calculated in constant time
with a simple formula, that sufficient memory is available, and that|the
address calculation supplies an even distribution of elements in memory.

This kind of storage is called hashing. It is always suitable when the actual num-
ber of keys to be stored is small compared to the number of possible keys. A compiler
can have a symbol table with 10 000 entries; the number of possible variable names
with, for example, only 10 characters is much larger. If, for simplicity, we assume
that only the 26 lower case letters are to be used, the result already 8htiws
approx. 1.410'* possibilities. The same problem arises with the storage of huge
matrices in which only a small percentage of the elements is not equal to zero.

The functionh (k) for the transformation of the key into the address is called
the hash functiorbecause allV possibilities of keys must be mapped Aé stor-
age places by hashing and mixing up informatidh.is supposed to be very much
smaller thanV, which immediately creates a problem: two different keys may re-
sult in the same address. Such collisions must be taken into account. The function
h(k),0 < k < N mustyield only values between 0 aindl — 1. A very simple hash
function for numeric keys is the modulo function

h(k) = k mod M

Here, in order to achieve an even distribution, a prime number is chosen for
the table sizel/. Nevertheless, the distribution strongly depends on the kind and
occurrence of the keys, and it is sometimes difficult to find a function that leads to
only a few collisions. A hash function for character strings should ensure that similar
character strings do not lead to agglomerations in the hash table. The best way is to
check the distribution by way of ‘actual’ data, in order to adapt the hash function
appropriately before a software product is used.

Collision handling

What happens if two keys land on the same address? The second one comes off worse
if the place is already occupied. One method is the so-called ‘open addressing,’ in
which the attempt is made, by repeated application of the same (or another) hash
function, to jump to a new, free address. This method assumes that there must be a
tag for an address which shows whether it is free or not. When the table is filled,
searching for and entering an element will take longer. Thus, the compieityis
an expectation value for a table which is not too full. Good addressing methods need
approximately three or four calculations and associated jumps in order to find a free
place with an occupation rateof 90%. The occupation rateis defined as the ratio
of the number of entries and the size of the hash table.

Open addressing is problematic when elements are to be deleted, because the
corresponding table entry cannot simply be marked as ‘free.’ It might well be that
the entry has been previously used as a jumping point for finding the next address
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Figure 7.1: Hashing with collision resolution by chaining.

during insertion of another element. After the deletion, this other element can no
longer be found.

Here is another common method in which the keys are not stored directly. In-
stead, each entry in the table consists of a reference to a singly-linked list in which
all keys with the same hash function value are stored. This method is called ‘hashing
with collision resolution by chaining’ and is shown in Figutd.

A table elemenf’[i] points to a list of all keys whose hash function value equals
7. In Figure?.lit holds tha’rh(k:l) =0, h(k‘g) = h(k4) = h(k7) =3, h(]fg,) =8 and
h(ke) = h(ke¢) = 9. Deletion of an element is simpler, and because of the nearly
unlimited length of a list, more elements can be stored than the table has positions.
Such an occupation rate 1 obviously entails a loss of performance, because in the
worst case, the search or insertion time is proportional to the length of the longest
list.

Map

This section gives a complete description of the hash-based-til&sgswhose name
differs from that of the STL clasmap by its upper case initial and a prefixed H.
Under the assumption made on pdg®, search or insertion of an elementHMap
is carried out in constant time, that is, independently of the numberf already
existing elements, whereasrirap, the same process is of complexilog N).

The internal data structure for the hash table is a vectwhose elements are
pointers to singly-linked lists, as shown in Figuré. The hash tabl@ of the figure
is implemented by means of the vectorA list is realized by means of the standard
list class.
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For reasons of simplicity and clearnessjapimplements only the most impor-
tant type names and functions of timap class. However, the functions available in
HMaphave the same interface amp, so that all the following examples which do
not assume sorting can work as well witfap, only more slowly.

/I File include/hmap.l{= hash map)
#ifndef HASHMAP_H
#define HASHMAP_H

/I implicit data structures
#include<vector>
#include<list>

#include<cassert>
#include<algorithm>

namespace br_stl {

/I hash map class
template<class Key, class T, class hashFun>
class HMap {
public:
typedef size t size_type;
typedef std::pair<const Key,T> value_type;

/I define more readable denominations
typedef std:list<value_type> list_type;
typedef std::vector<list_type*> vector_type;

/* The template paramet#&ey stands for the type of the key;stands for the class
of data associated to a key; ahdshFun is the placeholder for the data type
of the function objects used for address calculation. Below, a function object for
address calculation is proposed, but any other one can be used as well. Analogous
tomap, value_type s the type of the elements that are stored \apobject.
value_type is a pair consisting of a constant key and the associated data.

*/

class iterator;
typedef iterator const_iterator; // maintain STL compatibility
friend class iterator;

/* The nested clasterator cooperates closely witHMap so that both are mutu-
ally declared afriend . iterator is only supposed to allow forward traversal
and therefore its category is of the standard tfgnevard_iterator_tag
An iterator object allows you to visit all the elements dillapobject one after the
other. Neither an order nor a sorting is defined for the elements. The visiting order
of the iterator is given by the implicit data structure (see betperator++() ).

*

class iterator {
friend class HMap<Key, T, hashFun>;
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private:

typename list_type::iterator current;

typedef std::forward_iterator_tag iterator_category;
size_type Address;

const vector_type *pVec;

[* Privately, theHMapiterator must remember three things:
e current , an iterator for a list which begins at an element of the vector,
e pVec, a pointer to the vector on which th#&Mapiterator walks, and

e Address , the number of the vector element where the currently processed
list begins.

The constructors initialize the private data, with the default constructor initial-
izing the pointer to the vector with O armlirrent  implicitly with a list end
iterator.

*/

public:
iterator()
: pVec(0) {
}

iterator(typename list_type::iterator LI,

size_type A, const vector_type *C)
. current(Ll), Address(A), pVec(C) {
}

/* The following operators allow you to check-#Mapiterator in the condition
part ofif orwhile astowhether itis at all defined:
*/

operator const void* () const { return pVec;}

bool operator!() const { return pVec == 0;}

/* The operator for dereferencing occurs both ind¢bast variation and in the
nonconst variation. Thus, dereferencing of an undefined iterator is pun-
ished with a program abort, which is a clear message to you to check the
program that uses the iterator.

*/

const value_type& operator*() const {
assert(pVec);
return *current;
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value_type& operator*() {
assert(pVec);
return *current;

}

/* The noneonst variation is required to modify data independently of the key.
Modification of the key must be excluded because it requires a new address
calculation. Constancy is guaranteed by tomst declaration in the type
definition ofvalue_type . How does theHMapiterator move from one el-
ement to the other witbperator++()  ? First,current is incremented:

*/

iterator& operator++() {
++current;

I* If after this,current  points to a list element, a reference to the iterator
is returned (see beloweturn *this ). Otherwise, the end of the list
is reached.
*/
if(current == (*pVec)[Address]->end()) {
[* At this point, one address after the other is checked in the vector,
until either a list entry is found or the end of the vector is reached.
In the latter case, the iterator becomes invalid, because it can only
move forward. In order to exclude further up&ec is set to 0:
*/

while(++Address < pVec->size())
if(*pVec)[Address]) {
current = (*pVec)[Address]->begin();

break;
}
if(Address == pVec->size()) // end of vector reached
pVec = 0;

}

return *this;

}

/* The postfix variation does not show any peculiarities. It remembers the old
state in the variableemp, calls the prefix form, and returns the old state.
*/
iterator operator++(int) {
iterator temp = *this;
operator++();
return temp;

}

/* The last two methods compare tWiMapiterators. Two undefined or invali-
dated iterators are always considered as equal:
*/
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bool operator==(const iterator& x) const {
return pVec && x.pVec && current == x.current
|| 'pVec && !x.pVec;
}

bool operator!=(const iterator& x) const {
return loperator==(x);

}

}. Il iterator

[* With this, the nested cladgerator is concluded, so that now the data and
methods of thédiMapclass can follow:

*/

private:

vector_type v;

hashFun hf;

size_type count;

/*count is the number of stored pairs of keys and datés the vector whose ele-
ments are pointers to linked lists, ainf is the function object used for calculation
of the hash address.

*/

public:
iterator begin() const {
size_type adr = 0;
while(adr < v.size()) {

if('v[adr]) 1l found nothing?
++adr; /I continue search
else

return iterator(v[adr]->begin(), adr, &v);

}

return iterator();

}

iterator end() const {
return iterator();

}

/* The methodegin() supplies an iterator to the first element — provided it exists
—in theHMapobject. Otherwise, as wittnd() , an end iterator is returned. Iter-
ators can become invalid if, after their generation, elements have been inserted or
deleted in theHMapobject.

The followingHMapconstructor needs a hash function objeets the parameter.
If no function object is passed, a default objécis generated by means of the
default constructor of thbashFun class. The vector is created in the suitable
sizef.tableSize() , and all elements are initialized with 0. It is assumed that
thehashFun class provides the methaableSize() (see Section.2.1).

*/
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HMap(hashFun f = hashFun())
: v(f.tableSize(),0), hf(f), count(0) {
}

[* What is meant by ‘suitable size'? The hash table has a capRcityith a prime
number generally being chosen fB8r On the other hand, the hash function object
is used for address calculation; thus, this object too must kRoW is important
that both function and vector denote the samé¢herefore, a separate specification
in the initialization ofHMapand hash function object would be prone to errors.

In order to avoid the hash function object having to procure the information on
the capacity of the vector, the opposite method is followed: the vector is created
in a size determined by the hash function object, assuming that the hash function
object provides a methothbleSize() for finding out the size of the table.

This assumption is checked at compile time.

*/
HMap(const HMap& S) {
hf = S.hf;
/I provide deep copy
v = vector_type(S.v.size(),0);
count = 0O;
/I begin(), end(), insert(): see below
iterator t = S.begin();
while(t = S.end())
insert(*t++);
}
~HMap() { clear();} 1 see below
HMapé& operator=(const HMap& S) {
if(this 1= &S) {
HMap temp(S);
swap(temp); //  see below
}
return *this;
}
[*clear() usesdelete to call the destructor of each list referred to by a vector
element. Subsequently, the vector element is marked as unoccupied.
*/
void clear() {
for(size_t i = 0; i < v.size(); ++i)
if(v[i]) { 1 does list exist?
delete VI[i];
v[i] = 0;
}
count = O;
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/* Inthe followingfind()  andinsert() functions, the sought address within the
vectorv is calculated directly by means of the hash function object. If the vector
element contains a pointer to a list, the list is searcheftht() by means of
the list iteratortemp until either an element with the correct key is found or the
list has been completely processed:

*

iterator find(const Key& k) const {

size_type address = hf(k); 1 calculate address

if('v[address])
return iterator(); 1 non-existent
typename list_type::iterator
temp = v[address]->begin();

/I findk in the list
while(temp !'= v[address]->end())
if((*temp).first == k)
return iterator(temp,address,&v); // found
else ++temp;

return iterator();

}

/* A map stores pairs of keys and associated data, where the first eldimgent () is
the key and the second elemes¢¢ond ) contains the datdind()  returns an
iterator which can be interpreted as a pointer to a pair. In order to obtain the data
belonging to a key, the index operator can be called with the key as argument:

*/
T& operator[]J(const Key& k) {
return (*find(k)).second;
}
/* If the key does not exist, thatis,fihd()  returns an end iterator, a run time error
occurs while dereferencing! (See the dereferencing operator onlg&ge

TheHMapclass allows the insertion of an element only if an element with that key
does not yet exist. If this is not desirable, it is easily possible tdHMapto build
aMultiHMap class that allows multiple insertion of elements with identical keys.
As in the STL,insert() returns a pair whose first part consists of the iterator
that points to the found position. The second part indicates whether the insertion
has taken place or not.
*/
std::pair<iterator, bool> insert(const value_type& P) {
iterator temp = find(P.first);
bool inserted = false;

if('temp) { // not present
size_type address = hf(P.first);
if(lv[address])
v[address] = new list_type;
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v[address]->push_front(P);

temp = find(P.first); // redefine temp
inserted = true;
++count;

}

return std::make_pair(temp, inserted);

}

[* After the insertiontemp is redefined, because the iterator at first does not point
to an existing element. The known auxiliary functiorake_pair()  (page20)
generates a pair object to be returned.

*/

void erase(iterator q) {

[* If the iterator is defined at all, the member functemase() of the associated
listis called. Subsequently, the list is deleted, provided it is now empty, and the
vector element to which the list is attached is set to 0.

*/

if(q.pVec) { 1 defined?
v[g.Address]->erase(q.current);

if(v[g.Address]->empty()) {
delete v[g.Address];
v[g.Address] = 0;

}

--count;

}

/* Sometimes, we would probably like to delete all the elements of a map that have
a given key. In e&HMap this can at most be one element, but iklslultimap |,
several elements might be affected.

*/

/I suitable forHMapandHMultimap

size_type erase(const Key& k) {

size_type deleted_elements = 0; // count

/I calculate address
size_type address = hf(k);
if(lv[address])

return O; 1 not present

typename list_type::iterator
temp = v[address]->begin();

/* In the following loop, the list is searched. A iterator callgds is used to
remember the current position for the deletion itself.
*/
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while(temp = v[address]->end()) {
if((*temp).first == k) {
typename list_type:iterator pos = temp++;

v[address]->erase(pos);
/I pos is now undefined

--count;
++deleted_elements;

}

else ++temp;

}

/* The temporary iteratdemp is advanced ifmothbranches of thé instruc-
tion. The operatior+ cannot be extracted in order to save ¢fge , because
temp would then be identical witpos which is undefined after the deletion,
and a defined+ operation would no longer be possible.

*/

/I delete hash table entry if needed
if(v[address]->empty()) {

delete v[address];

v[address] = 0;
}

return deleted_elements;

}

/* Here are a couple of very simple methods. As opposed to other containers,
max_size() does not indicate the maximum number of elements that can be
stored in aHMap container, which is limited only by the capacity of the lists,
but the number of available hash table entries. This information is more sensible,
because the efficiency of ldMapdepends on the occupation range assum-
ing a good hash function. The occupation rate can easily be determined:
size()/max_size()

*/

size_type size() const { return count;}
size_type max_size() const { return v.size();}

bool empty() const { return count == 0;}

void swap(HMap& s) {
v.swap(s.v);
std::swap(count, s.count);
std::swap(hf, s.hf);

b
} /I namespace br_stl

#endif //  Filehmap.h
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7.2.1

Theswap() method swaps tweMapcontainers, using both thlevap() -method
of the vector container and an algorithm (see pag® for swapping the remaining
private data.

Example

The following example is taken from Sectidn4.3and has been slightly modified.
As in the example at the end of Chapt:rthe modification consists in the intro-
duction of a compiler switclSTL_map which allows you to compile the program
both with the map container of the STL and with thlapcontainer just presented.
The switch controls not only the type definitions, but also the inclusion of a class
HashFun (file hashfun.l, used to create a function object for the address calcula-
tion.

/I function object for hash address calculation
#ifndef HASH_FUNCTION_H
#define HASH_FUNCTION_H

namespace br_stl {
template<class IndexType>
class HashFun {
public:
/I size of hash table: 1009 entries
HashFun(long prime=1009) // other prime numbers are possible
: tabSize(prime) {
}

/I simple hash function
long operator()(IndexType p) const {
return long(p) % tabSize;

}

I tableSize() is used by the constructor oftéMap
/I or HSet container for determination of the size
long tableSize() const {

return tabSize;

}

private:
long tabSize;
3
}
#endif

Il k7/maph.cppExample for a map with hash map
#include<string>
#include<iostream>
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/I compiler switch (see text)
/l#define STL_map
#ifdef STL_map
#include<map>
/I comparison objectess<long>
typedef std::map<long, std::string> MapType;

#else
#include<hmap.h>
#include<hashfun.h>
typedef br_stl::HMap<long, std::string,
br_stl::HashFun<long> > MapType;
#endif

typedef MapType::value_type ValuePair;
using namespace std;

int main() {
/I same as itk4/mapl.cppn page30

}

The source code of theain() program remains unchanged with respect to page
80. However, the running program behaves differently when the compiler switch
STL_mapis not set and thereforelMapcontainer is used as underlying implemen-
tation: the output imot sorted.

7.3 Set

A set differs from a map in that the keys are also the data, that is, no separation
exists. By changing the parts concerning pairs of keys and data, it is very easy to
derive a correspondingSet class from theHMapclass of Sectior?.2. Apart from

pure name changeBNlapbecomesiSet), these parts are so few that th8et class

is not listed here. Further modifications concern only the following points:

e Overloaded operators for set operations are added which will be discussed in the
following sections.

e HSet has no index operator, because keys and data are the same.

e In the HSet class, the dereferencing operator for an iterator is present only in
theconst variation, since direct modification of an element must not be allowed
because of the necessary address recalculation. In contrast, tMtyeclass,
the noneonst variation is desirable for modifying data independently from their
keys. As can be seen from the definitionHap::value_type , constancy of
the key is guaranteed.

Of courseHSet is included in the sample files available via the Interhegg.f).
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7.4 Overloaded operators for sets

Once you design a class for sets, it is only reasonable to provide the usual set op-
erations as overloaded operators. In the STL, these operators do not exist for set
containers, so an extension is presented here which is based on three design criteria:

e The choice of operator symbols partly orients with the symbols known from the
Pascal programming language:

— + for the union of two sets
— - for the difference of two sets
— * for the intersection of two sets

For the symmetric difference, which corresponds to the exclusive or, the corre-
sponding C++ operatdy is chosen. The Pascal keywand does not exist in C++

and it does not seem reasonable to choose another C++ symbol instead, so no
operator for the subset relation is defined.

e The operators are implemented by means of the global set operations shown in
Chaptert.

e The binary operators, -, *, and” make use of the short form operatets, and
so on.

The following description is based on the fact that all methods (i.e. short form
operators) are defined inline in the class definitioAsét (file hse). The algorithms
from include/setalgo.l{see chapted) are used. The corresponding binary operator
is not a member function, i.e. defined outside the class definition.

7.4.1 Union

Exceptionally, no use is made of the functionion() of Chapter6 to prevent
creation of a copy ofthis

HSet& operator+=(const HSet& S) { i Union
/' Union  from include/setalgo.ls not used
/I in order to avoid generation of a copythis

typename HSet::iterator i = S.begin();
while(i != S.end()) insert(*i++);
return *this;

}

/I binary operator
template<class Key, class hashFun>
HSet<Key, hashFun> operator+(const HSet<Key, hashFun>& S1,
const HSet<Key, hashFun>& S2) {
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HSet<Key, hashFun> result = S1,
return result += S2;

7.4.2 Intersection

HSet& operator*=(const HSet& S) { 1 intersection
Intersection(*this, S, *this);
return *this;

}

/I binary operator
template<class Key, class hashFun>
HSet<Key, hashFun> operator*(const HSet<Key, hashFun>& S1,
const HSet<Key, hashFun>& S2) {
HSet<Key, hashFun> result = S1;
return result *= S2;

7.4.3 Difference

HSet& operator-=(const HSet& S) { I difference
Difference(*this, S, *this);
return *this;

}

/I binary operator
template<class Key, class hashFun>
HSet<Key, hashFun> operator-(const HSet<Key, hashFun>& S1,
const HSet<Key, hashFun>& S2) {
HSet<Key, hashFun> result = S1;
return result -= S2;

7.4.4 Symmetric difference

HSet& operator*=(const HSet& S) { 1 symmetric difference
Symmetric_Difference(*this, S, *this);
return *this;

}

/I binary operator
template<class Key, class hashFun>
HSet<Key, hashFun> operator*(const HSet<Key, hashFun>& S1,
const HSet<Key, hashFun>& S2) {
HSet<Key, hashFun> result = S1,
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return result = S2;

}

7.4.5 Example

This example shows the application of the overloaded operators for set operations
without giving a choice between the set implementation of the STL andea
container, because the former does not provide these operators.

/I k7/mainseto.cpp
#include<showseq.h>
#include<hset.h>
#include<hashfun.h>
using namespace std;
using namespace br_stl;

int main() {
typedef HSet<int, HashFun<int> > SET;
SET Setl, Set2, Result;

for(int i = 0; i < 10; ++i) Setl.insert(i);

for(int i = 7; i < 16; ++i) Set2.insert(i);
showSequence(Setl); I 0123456789
showSequence(Set2); I 7891011121314 15

cout << "Union: set += set\n";

Result = Setl;

Result += Set2;

showSequence(Result); // 0123456789101112131415

cout << "Intersection: set *= set\n";
Result = Setl;
Result *= Set2;
showSequence(Result); // 789

cout << "Union: result = set + set\n";
Result = Setl + Set2;
showSequence(Result); // 0123456789101112131415

cout << "Intersection: result = set * set\n";
Result = Setl * Set2;
showSequence(Result); // 789

cout << "Difference: result = set - set\n";
Result = Setl - Set2;
showSequence(Result); // 0123456

cout << "Symmetric difference: result = set * set\n";
Result = Setl " Set2;
showSequence(Result); // 0123456101112131415
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Summary:While the following chapters deal with complex data structures and algo-
rithms, this chapter looks at smaller applications that show how, thanks to the power
of the STL, much can be achieved with relatively short programs. The applications
are: output of a cross-reference list of identifiers in a text, generation of a permuted
index, and search for related concepts of a given term (thesaurus).

8.1 Cross-reference

The first example is a program for printing a cross-reference list, that is, a list which
contains the words or identifiers occurring in the text in alphabetical order, together
with the position of their occurrence, in this case, their line numbers. This is the
beginning of the cross-reference list that belongs to the following program:

_ 1 42 51 54

a ;11 18 20 20 20 22 65 67 71
aKey : 48 55 61 67

all . 10

and : 9

are . 68 68

avoid : 9

b 118 21 21 21 22
back . 58

be : 10 66

because . 66

begin 174

beginning 1 39 69

In the simple variation described here, words occurring in comments are output
as well. The appropriate data structure is a map container. The value pairs consist of
the identifier of typestring  as key and a list of line numbers. Because of the sorted
storage, no special sorting process is needed.
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/I k8l/crossref.cpp program for printing cross-references
#include<fstream>

#include<string>

#include<list>

#include<cctype>

#include<showseq.h>

#include<map>

/* To avoid different sorting of upper case and lower case letters, the Caspare is
used which converts all strings to be compared into lower case, since a corresponding
function is not provided in thetring  class:

*/

struct Compare {

bool operator()(std::string a, std::string b) const {
for(size_t i=0; i< a.length(); ++i)
afi]=std::tolower(al[i]);
for(size_t i=0; i< b.length(); ++i)
b[i]=std::tolower(b[i]);
return a < b;

h

using namespace std;

int main( ) {
/I This program generates its own cross-reference list.
ifstream Source("crossref.cpp”);

typedef map<string, list<int>, Compare > MAP;
MAP CrossRef;

char c;
int LineNo = 1;

/* The next section largely corresponds to tierator>>() on page4l. The
difference lies in the counting of lines.
*/
while(Source) {
/I find beginning of identifier

c = '\0;

while(Source && !(isalpha(c) || '’ == ¢)) {
Source.get(c);
ifc == \n") ++LineNo;

}

string aKey(1,c);

/I collect rest of identifier
while(Source && (isalnum(c) || '’ == ¢)) {
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Source.get(c);

ifisalnum(c) || ' == ¢)
aKey += c;
}
Source.putback(c); 1l back to input stream
if(c)
CrossRef[aKey].push_back(LineNo); // entry

}

/* Putting the line number in the list utilizes the fact that the
MAP::operatorf]() returns a reference to the entry, even if this has
still to be created because the key does not yet exist. The entry for thaklegy
is a list. Since the line numbers are inserted witish_back() , they are in the
correct order from the very beginning.

The output of the cross-reference list profits by the sorted storagefirhe
element of a value pair is the identifier (key), thkecond element is the list
which is output by means of the known template.

*/

MAP::const_iterator iter = CrossRef.begin();

while(iter != CrossRef.end()) {
cout << (*iter).first; 1 identifier
cout.width(20 - (*iter).first.length());

cout << " ',
br_stl::showSequence((*iter++).second); // line numbers

8.2 Permuted index

A permuted index is printed by some journals at the beginning of a new year to
facilitate retrieving articles from the previous year using the terms contained in the
titles. The permuted index is alphabetically sorted by words in the title and thus
facilitates the search for articles on a given subject. T&hleshows an example
with the three titles ‘Electronic Mail and POP,’ ‘Objects in the World Wide Web,’
and ‘Unix or WindowsNT?’

The alphabetical order of the terms in the second column allows quick orienta-
tion. Table8.1was generated by the following sample program which exploits a map
container and its property of sorted storage. A pointer to each relevant word — here,
all words beginning with an upper case letter are included — is stored in the map
container together with the current title number. Subsequently, the contents may be
output only in a formatted way.
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Search term Page
Electronic Mail and POP 174
Electronic Mail and POP 174
Objects in the World Wide Web 162
Electronic Mailand POP 174
Unix or WindowsNT? 12
Obijects in the World Wide Web 162
Objects in the World  Wide Web 162
Unix or  WindowsNT? 12
Objectsinthe  World Wide Web 162

Table 8.1: Example of a permuted index.

/I k8/permidx.cpp

/I Program for generation of a permuted index
#include<iostream>

#include<vector>

#include<string>

#include<cstring> // for stremp()
#include<map>

#include<cctype>

/* The classStringCompare  is needed for the creation of a function object for the map
container.
*/
struct StringCompare {
bool operator()(const char* a, const char* b) const {
return std::strcmp(a,b) < 0;
}
h

using namespace std;
int main() {
vector<string> Title(3);

vector<int> Page(Title.size());

/* Normally, titles and page humbers would be read from a file, but for simplicity, in
this example both are wired in:

*

Title[0] = "Electronic Mail and POP"; Page[0]=174;
Title[1] = "Objects in the World Wide Web"; Page[1]=162;
Title[2] = "Unix or WindowsNT?"; Page[2]= 12;

typedef map<const char*, int, StringCompare> MAP;
MAP aMap;
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/* All pointers to words that begin with an upper case letter are stored in the map
container together with the page numbers of the titles. It is assumed that words
are separated by spaces. An alternative could be to store not the pointers, but the
words themselves as string objects.

On average, however, this would require more memory, and a multimap container
would have to be used, because the same words can occur in different titles. The
pointers, in contrast, are unique. The same words in different titles have different
addresses.
*/
for(size_t i = 0; i < Title.size(); ++i) {
size_t j = 0O;

do {
const char *Word = Title[i].c_str() + j;
if(isalpha(*Word) && isupper(*Word))
aMap[Word] = i; 1 entry

/I find next space
while(j < Title[i].length()
&& Title[i][i] '= ' ") ++j;

/I find beginning of word
while(j < Title[i].length()
&& lisalpha(Title[i][j])) ++j;
} while(j < Title[i].length());
}

/* The map container is filled, now we need the output. As usual in such cases, the
formatting requires more program lines than the rest.
*/
MAP::const_iterator | = aMap.begin();
const size_t leftColumnWidth = 28,
rightColumnWidth = 30;

while(l '= aMap.end()) {
/I determine left column text
/I =first character of title na(*l).second
/I up to the beginning of the search term
/I which begins af*1).first
const char *begin = Title[(*l).second].c_str();
const char *end = (*).first;

/I and output with leading spaces
cout.width(leftColumnWidth-(end-begin));
cout << " "
while(begin = end)

cout << *begin++;

/I output right column text
cout << " "; 1 highlight separation left/right
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cout.width(rightColumnWidth);
cout.setf(ios::left, ios::adjustfield); // ranged left
cout << (*I).first;

cout.width(4);

cout.setf(ios::right, ios::adjustfield); // ranged right

cout << Page[(*l).second] I page number
<< endl;

++; /I go to next entry

8.3 Thesaurus

A thesaurus is a systematic collection of words and terms that allows you to find
terms related to a given concept. The terms can be similar, but they can also represent
opposites or antonyms. In this respect, a thesaurus is a counterpart to a dictionary.
The dictionary explains the concept belonging to a given term; the thesaurus presents
words related by subject and meaning to a given concept.

The thesaurus used in this example was published in its original form by
Peter Mark Roget in 1852. It is contained in the fiteyet.dat which is used by

for the generation of a directed graph of 1022 nodes and 5075 edges

(= references). The file can be obtained via FTP (see p@ge

Instead of building a graph, this section shows how very fast access to related
terms is possible with the lower-bound algorithm. A possible application could be in
a text processing system, to provide an author with a formulation aid. The lines of
the file look as follows:

lexistence:2 69 125 149 156 166 193 455 506 527

2inexistence:1 4 167 192 194 368 458 526 527 771
3substantiality:4 323 325

4unsubstantiality:3 34 194 360 432 452 458 527 and so on.

The numbers after the conceqibstantiality mean that corresponding en-
tries can be found in lines 4, 323, and 325. There are several possibilities to allow fast
access. Here, thewer_bound()  algorithm is employed, which assumes a sorted
container and works with the principle of binary search. It finds the first position that
can be used for insertion into the container without violating the sorting order. Thus,
the algorithm is also suitable for finding an entry in a container.

Three different containers are needed:

e avector to contain all terms,
e avector of lists containing the references, and

e a vector that contains the sorting order and is used as an index vector for fast
access.
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The alternative of not using an index vector and sorting the first two vectors is

not chosen, because it is a rather long-winded process to update all references in the
lists.

{

/I k8/thesaur.cpp program for the output of terms
/I related to a given concept

#include<fstream>

#include<vector>

#include<string>

#include<list>

#include<cctype>

#include<algorithm>

#include<iostream>

struct indirectCompare {
indirectCompare(const std::vector<std::string>& v) : V(v)

bool operator()( int x, int y) const {
return V[x] < VI[y];

}

bool operator()( int x, const std::string& a) const {
return V[x] < a;

}

const std::vector<std::string>& V;
b
/* The classndirectCompare compares the corresponding values in the ve¢tor
passed indices, and the reference is initialized during construction of the object. The
second overloaded function operator directly compares a value with a vector element

whose index is given.
*/

void readRoget(std::vector<std::string>& Words,
std::vector<std::list<int> >& lists) {
/I see Appendix, pageXs7 ff
}

/* The procedureeadRoget() reads the fileoget.datand has nothing much to do with
the STL. It mainly concentrates on analysis and conversion of the data format and has
therefore been relegated to the Appendix.

*/

using namespace std;

int main( ) {
const int Maxi = 1022; // number of entries imoget.dat
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vector<string> Words(Maxi);
vector<list<int> > relatedWords(Maxi);
vector<int> Index(Maxi);

/I read thesaurus file
readRoget(Words,relatedWords);

/I build index vector

for(size_t i = 0; i < Index.size(); ++i)
Index[i] = i;
indirectCompare aComparison(Words); ) functor

sort(Index.begin(), Index.end(), aComparison);

/* The index vector now indicates the ordering, so tvatrds[Index[0]] is the
first term according to the alphabetical sorting order. This creates the precondition
for a binary search.

*/

cout << "Search term? “;
string SearchTerm;
getline(cin, SearchTerm);

/I binary search
vector<int>::const_iterator TableEnd,
where = lower_bound(Index.begin(), Index.end(),
SearchTerm, aComparison);

/* If the iteratorwhere points to the end of the table, the term was not found.
Otherwise, a check must be made as to whether the found term matches the
search term in its first characters. This does not have to be the case, because
lower_bound()  only returns a position which is suitable for sorted insertion.

*/

bool found = true; i hypothesis to be checked
if(where == TableEnd)
found = false;
else {
/I next possible entry i& search term
/I do they match?
size_ t i = 0;
while(i < Words[*where].length()
&& i < SearchTerm.length()
&& found)
if(Words[*where][i] != SearchTerm[i])
found = false;
else ++i;
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/* If the term is found, the list of references, provided that references exist, is
‘scoured’ with the iteratohere , and the corresponding terms are displayed on
screen.

*/

if(found) {
cout << "found
<< Words[*where] << endl
<< "related words:\n";

list<int>::const_iterator
atEnd = relatedWords[*where].end(),
here = relatedWords[*where].begin();

if(here == atEnd)
cout << "not found\n";
else
while(here != atEnd)
cout << '\t' << Words[*here++] << endl;

}

else cout << "not found\n";

To conclude, the output of the program for the search term ‘free’ is shown:

Search term? free

found : freedom

related words:
cheapness
permission
liberation
subjection
hindrance
facility
will
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9.1

Summary: The elements of the STL can easily be used for constructing arrays or
vectors in which the access to elements is checked at run time to determine an index
overflow. Construction of matrices for different memory models is quite possible,
as is shown for C matrices (row-wise storage), FORTRAN matrices (column-wise
storage), and symmetric matrices. A class for sparse matrices is implemented by
means of an associative container.

The vectors and matrices of this chapter are for elements of an arbitrary type, i.e.
for complex class types as well as basic data types. If vectors and matrices are to
be used exclusively for numerical data types lilogble or complex , the standard
library classvalarray could be considered § ) ))
valarray  operations are optimized for speed, but (for exactly that reason) do no
bounds checks. Sparse matrices as described here cannot be realizedhwith

in a comparably simple way.

Checked vectors

The subscript operators of the vector templates of the STL do not carry out an index
check. The following example tries to access an invalid vector position:

vector<string> stringVec(4);
1

stringVec[0] = stringVec[34]; // Error!

Obviously this is a nonsensical assignment. If a program goes on working with
values generated by erroneous indices, the error is often detected only through
consequential errors and is therefore difficult to identify. It is, however, possible to
construct a new vector class named, for examgilegkedVector , that carries out

an index check. This class is not part of the STL, but it builds on it.

The principle is straightforwardtheckedVector  is avector which carries out
additional checks. In C++, the relation ‘is a’ is expressed through public inheritance.
The derived class must only provide the constructors of the base class and redefine
the index operator:
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/I include/checkvec.hvector class with ch
#ifndef CHECKVEC_H

#define CHECKVEC_H
#include<cassert>

#include<vector>

namespace br_stl {

template<class T>

ecked limits

class checkedVector : public std::vector<T> { // inherit

public:
/I inherited types
typedef typename checkedVector::
typedef typename checkedVector::
typedef typename checkedVector:
typedef typename checkedVector:
typedef typename checkedVector::

checkedVector() {
}

checkedVector(size_type n, const
: std::vector<T>(n, value) {

}

checkedVector(iterator i, iterator j)
. std::vector<T>(i, j) {

}

size_type size_type;

iterator iterator;

difference_type difference_type;
reference reference;
const_reference const_reference;

T& value = T()

reference operator[](difference_type index) {

assert(index >=0

&& index < static_cast<difference_type>(size()));
return std::vector<T>::operator[](index);

}

const_reference operator[](difference_type index) const {

assert(index >=0

&& index < static_cast<difference_type>(size()));
return std::vector<T>::operator[](index);

L
}
#endif

Note: The STL allows inheritance, but doest support polymorphism! In this
sense, methods of derived classes may be called, but not via pointers or references of
tip the base class type. In the case of vectors, this is certainly no problem, but be aware

of it.
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difference_type is deliberately chosen as the argument type, so that neg-
ative erroneous index values are recognized as well. Thedsigpetype  would
lead to anint — unsigned conversion, and a negative index would be recognized
only because it is converted into a significantly large number. Applying this template
generates error messages at run time, when the permitted index range is exceeded in
either direction. The index check can be switched off with the preprocessor instruc-
tion#define NDEBUG , ifitis inserted beforetinclude<cassert> . The following
program provokes a run time error by accessing a non-existent vector element:

/I k9lallstrvec.cpp

/I string vector container with index check
#include<checkvec.h>  // containscheckedVector
#include<iostream>

#include<string>

int main() {
/Il astring vector of 4 elements
br_stl::checkedVector<std::string> stringVec(4);
stringVec[0] = "first";
stringVec[1l] = "second";
stringVec[2] = "third";
stringVec[3] = "fourth";
std::cout << "provoked program abort:" << std::endl;
stringVec[4] = "index error"; /I error

}

Thus, thecheckedVector  class puts a so-called safety wrapper around the vec-
tor class. One interface, namely the access to elements of the vector, is adapted to the
safety requirements, which is why thbeckedVector class can be called a kind
of ‘vector adaptor.’

Matrices as nested containers

Besides one-dimensional arrays, two- and three-dimensional matrices are widely
used in mathematical applications. Matrices can be build usingalbeay class

of the C++ standard library and related classes. The implementation by means of
containers from the STL is also possible, as shown here. Mathematical matrices
are special cases of arrays of elements which are of the dataitypedloat
complex , rational , or similar. ThecheckedVector class (Sectiof.]) is a one-
dimensional matrix in this sense, with the difference that, unlike a normal C array,
the class allows safe access via the index operator, as we would also expect for two-
and more-dimensional matrix classes. Access to the elements of a one- or more-
dimensional matrix object should

e be safe by checking all indices, and

e be carried out via the index operafpr (or (I , 000 , --), SO that the usual
notation can be maintained.
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A possible alternative would be to overload the bracket operator for round paren-
theses (), which is shown in Sectiér8. It may be argued that it is more pleasing to
the eye to writeM(1,17) instead oM[1][17] . When writing new programs, this is
really not important. But what if you are responsible for maintaining and servicing
existing large programs which use tfiesyntax? A further argument is that a matrix
class should behave as similarly as possible to a conventional C array.

The first requirement is often dismissed, the decrease in efficiency being the
justification. This argument is not a hard and fast rule, for more than one reason:

e A correct program is more important than a fast one. As industry practice shows,
index errors occur quite frequently. Finding the source of the error is difficult when
calculation is continued with erroneous data and the error itself becomes evident
only through consequential errors.

e The increased run time caused by checked access is often comparable to further
operations relative to the array element, and is sometimes negligible. In the fields
of science and engineering, there are programs in which the index check is signif-
icantly disadvantageous; however, it depends on the specific case. Only if a pro-
gram is too slowbecause ofhe index check, might one consider, after thorough
testing, taking the index check out.

9.2.1 Two-dimensional matrices

What is a two-dimensional matrix whose elements are of type? Anint matrix

is avector consisting oint vectors! This view allows a significantly more elegant
formulation of a matrix class in comparison to the assertion: ‘The métixor
consists of mathematicalt vectors.” The formulation of this arelation as inheri-
tance shows the classatrix . Again, it is not the standard vector container which is
employed, but theheckedVector class of pagé 95derived from it, so that auto-
matic index checking is achieved. Only if no index check is required at all should
thecheckedVector  be replaced with theector

Il k9/a2/matrix.h

#ifndef MATRIX_H

#define MATRIX_H

#include<checkvec.h> // checked vector of Sectidh1
#include<iostream> I for operator<<() , see below

/* matrix as vector of vectors
*

template<class T>
class Matrix : public br_stl::checkedVector<
br_stl::checkedVector<T> > {

public:
typedef typename std::vector<T>:size type size_type;
Matrix(size_type x = 0, size_type y = 0)
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. br_stl::checkedVector< br_stl::checkedVector<T> >(x,
br_stl::checkedVector<T>(y)), rows(x), columns(y) {

[* Thus, theMatrix class inherits from theheckedVector  class, with the data
type of the vector elements now being described lmheckedVector<T>
template. With this, the matrix is a nested container that exploits the combina-
tion of templates with inheritance.

The constructor initializes the implicit subobject of the base class type
(checkedVector< checkedVector<T> > ) with the correct size.

Exactly as with the standard vector container, the second parameter of the con-
structor specifies with which value each vector element is to be initialized. Here,
the value is no more than a vector of tygfgeckedVector<T>  and lengthy.

Some simple methods follow for returning the number of rows and columns, ini-
tializing all matrix elements with a given valumif() ), and generation of the
identity matrix (() ), in which all diagonal elements = 1 and all other elements
= 0. For comparisorinit() does not return anything aigJ returns a refer-
ence to the matrix object, so that the latter method allows chaining of operations:
*/
size_type Rows() const {return rows; }

size_type Columns() const {return columns; }

void init(const T& Value) {

for (size_type i = 0; i < rows; ++i)
for (size_type j = 0; j < columns ; ++j)
operator[]()[j] = Value; // that is,(*this)[i][j]
}
/* The index operatooperator[]() is inherited fromcheckedVector . Ap-

plied toi , it supplies a reference to thé¢h element of the (base class subobject)
vector. This element is itself a vector of typkeckedVector<T> . Itis again
applied to the index operator, this time with the vajuewhich returns a refer-
ence to an object of typE, which is then assigned the value.

*
Il create identity matrix
Matrix<T>& 1() {
for (size_type i = 0; i < rows; ++i)
for (size_type j = 0; j < columns ; ++j)

operator[J()[j] = (==j) ? T(1) : T(0);
return *this;

}

protected:
size_type rows,
columns;
/I here, mathematical operators could follow ...



200 VECTORS AND MATRICES

}, /I classMatrix
#endif
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Further mathematical operations are omitted, because the point is not to describe
a voluminous matrix class, but to show the flexible and varied way in which elements
of the STL can be used for the construction of new data structures. In light of this,
it is not easy to understand why the C++ standardization committee has chosen a
numeric library which is not based on the STL, but is no easier to hawidex
has no dynamic data outside the base class subobject. Therefore, no special destruc-
tor, copy constructor, or an own assignment operator is needed. The corresponding
operations of the base class subobject are carried out lph#lekedVvector  class
or its superclasgector

To facilitate the output of a matrix, we can quickly formulate an output operator
which displays a matrix together with its row numbers:

template<class T>
inline std::ostream& operator<<(std::ostream& s,
const Matrix<T>& m ) {
typedef typename Matrix<T>::size_type size_type;

for (size_type i = 0; i < m.Rows(); ++i) {
s << stdiendl << i <<" :
for (size_type j = 0; j < m.Columns(); ++j)
s << mi][] <<" %
}
s << std::endl;
return s;
}
#endif /I file matrix.h

Further operations and functions can be built following this scheme. Some
sample applications show that applying the matrix class is extremely simple (see
k9/a2/matmain.cpp

Matrix<float> a(3,4);
a.init(1.0); 1l set all elements =1
cout << " Matrix a\n" << a;

The output of this simple program part is

Matrix a:
0:1111
1:1111
2:1111

Chaining of operations by returning the reference to the object is shown in the
line
cout << "\n Identity matrix:\\n" << a.l();

wherea.l() returns the matrix object so thagmplate<class T> ostreamé&
operator<<(ostream& s, const Matrix<xT>& m) can be called. As with a
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tip

simple C array, the index operator can be chained, but with the advantage that the
index is checked for limits:

Matrix<float> b(4,5);
for(int i=0; i< b.Rows(); ++i)
for(int j=0; j< b.Columns(); ++j)
b[il[i] = 1+i+(+1)/10,; 1l index operator
cout << "\n Matrix b:\n" << b;

Output:

Matrix b:

0:111213141.5
1:2122232425
2:3.132333435
3:4.14.24.34.44.5

Owing to the check imperator]() , an assignment of the kirtg§100][99]
= 1.0 leads to the erroneous program being aborted. Now, how do element access
and index check work? Let us consider the following example:

b[3][2] = 1.0;

Access is very simple; both indices are checked. Explaining how it works, how-
ever, is not that easy. In order to see what happens, we now résj8jigl and
resolve the function calls:

(b.checkedVector<checkedVector<float> >
::operator[](3)).operator[](2)

The anonymous base class subobject thexkedvector whose[] operator is
called with the argument ‘3.’ The elements of the vector are of typekedVector
<float> ;thatis, a reference to the thictleckedVector<float> of the base class
subobject is returned. If, for simplicity, we call the return vakj¢hen

X.operator[](2)

is executed, which means no more than executing the index opesatictior[]()

for a checkedVector<float> with the resultfloat& , that is, a reference to the
sought element. In each of these index operator calls, the limits are checked in a
uniform way. Apart from the equivalent definition for constant objects, there exists
only onedefinition of the index operator!

9.2.2 Three-dimensional matrix

The scheme used for two-dimensional matrices can now easily be extended for
matrices of arbitrary dimensions. Here, as a conclusion, an example for dimen-
sions is given. What is a three-dimensional matrix whose elements are dhtyfe
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The question can easily be answered in analogy to the previous section. A three-
dimensionalnt matrixis avector of two-dimensionaint matrices! The formu-
lation of theis arelation as inheritance is shown by tiatrix3aD class:

/I k9/a2/matrix3d.h 3D matrix as vector of 2D matrices
#ifndef MATRIX3D_H

#define MATRIX3D_H

#include"matrix.h"

template<class T>
class Matrix3D : public br_stl::checkedVector<Matrix<T> > {
public:
typedef typename std::vector<T>:size_type size_type;
Matrix3D(size_type x = 0, size_type y = 0,
size_type z = 0)
. br_stl::checkedVector<Matrix<T> >(x, Matrix<T>(y,z)),
rows(x), columns(y), zDim(z) {

}

/* The constructor initializes the base class subobjedtieakedVector  of length
¢, whose elements are matrices. Each element of this vector is initialized with a

(y,z) matrix.
*/
size_type Rows() const { return rows;}
size_type Columns() const { return columns;}
size_type zDIM() const { return zDim;}

/* The other methods resemble those of Matrix class. Thanit() method
needs only one loop over the outermost dimension of the three-dimensional

matrix, becauseoperator[](i) is of type &Matrix<T> and therefore
Matrix::init() is called for each two-dimensional submatrix:
*/
void init(const T& Value) {
for (size_type i = 0; i < rows; ++i)
operator[](i).init(Value);
}
protected:
size_type rows,
columns,
zDim; /I 3rd dimension
/I here, mathematical operators could follow ...
b
#endif

Since, likeMatrix , Matrix3D has no dynamic data outside the base class
subobject, no special destructor, copy constructor, or own assignment operator is
needed. The corresponding operations for the base class subobject are carried out by
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thecheckedVector  class itself. The index operator is inherited. Three-dimensional
matrices can be defined and used in a simple way, for example:

/I Excerpt fromk9/a2/matmain.cpp
#include"matrix3d.h"

int main() {
Matrix3D<float> M3(2,4,5);

for (i=0; i< M3.Rows(); ++i)
for (int j=0; j< M3.Columns(); ++j)
for (int k=0; k< M3.zDIM(); k++)
/I chained index operator on the left hand side
M3[iJi][k] = 10%(i+1)+(+1)+(k+1)/10.;

std::cout << "\n 3D matrix:\n";
for (i=0; i< M3.Rows(); ++i)
std::cout << "Submatrix " << i
<< "\n"
<< M3i];
/I ...and so on

Since forM3[i] , as with a two-dimensional matrix, the output operator is already
defined, the output only needs one loop level. The result is:

3D matrix:

Submatrix 0:
0:11.111.211.311.411.5
1:12.112.212.312412.5
2:13.113.213.313413.5
3:14.114.214.3 14.4 14.5

Submatrix 1:

0:21.121.221.321.421.5
1:22.122222322422.5
2:23.123.223.323423.5
3:24.124.224.324.424.5

An index error can easily be provoked and is ‘rewarded’ with program abortion,
no matter in which of the three dimensions the error occurs. The functioning of the
index operator can be described analogous ttteix class, but there is one more
chained operator call. Let us, for example, reformulate an as¢32][3]

M.checkedVector<Matrix<float> >::
operator[](1).operator[](2).operator[](3)

The first operator returns something of tyjdlatrix<float>& or, more pre-
cisely, a reference to the first element of theckedVector  subobject oM For
readability, we now abbreviate the returned ‘something’ &itind obtain
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Z.operator[](2).operator[](3)

We know that a reference is only another name (an alias), so that, in the
end,Z represents a matrix of typdatrix<float> . We have already seen that a
Matrix<float> is a vector of typecheckedVector<checkedVector<float>
>, from whichoperator[]() was inherited. This operator is now called with the
argument ‘2" and returns a result of typaeckedVector<float>& which, for
brevity, will be called X':

X.operator[](3)

The rest is easy when we think back to the end of Se&iari. Here too, as with
theMatrix class, access to an element is simpler than the underlying structure.

Generalization

The method for construction of classes for multi-dimensional matrices can easily
be generalized: an-dimensional matrix can always be considered as a vector of
(n — 1)-dimensional matrices, the existence of a clasg#or 1)-dimensional ma-

trices is assumed. In practice, however, four- and higher-dimensional matrices are
seldom employed. The index operator, assignment operator, copy constructor, and
destructor do not have to be written, they are provided byd¢h®r class; whereas

the constructor, the initialization methods, and the required mathematical operators
still have to be written.

Matrices for different memory
models

This section will show how matrices for different memory layouts can easily be im-
plemented by means of the STL programming methodology. Here, for a change, the
index operator is realized with round parentheses, that is, by overlaying the function
operatoroperator()() , because otherwise, an auxiliary class would be needed.

Different memory models can play a role when matrices from or in FORTRAN
programs are to be processed, for example when FORTRAN matrix subroutines are
called from within a C++ program. The matrices of the previous section are vectors
which, depending on the allocator, are not necessarily stored in memory one after
the other. Each matrix of this section is, however, mapped to a linear address space,
the reason for which a vector container is chosen as a basis. This address space shall
be of fixed, unchangeable size, which is expressed by the figvtarix  for the
matrix class.

The position of a matrix elemexi][j] inside the vector container depends,
however, on the kind of storage. Three cases will be discussed:

¢ C memory layout
Storage occursow-wise that is, row O lies at the beginning of the container. It
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is followed by row 1, and so on. The linear order of the nine elemafisof a
matrix M with three rows and three columns is as follows:

Moo, Mo, Moz, Myg, M1, M1z, Mag, Moy, Moy

FORTRAN memory layout

In the FORTRAN programming language, storage occotamn-wise Column

0 lies at the beginning of the container, followed by column 1, and so on. The
linear order of the nine elements of a matrix with three rows and three columns is
therefore:

Moo, Mg, Moy, Mo1, M11, Ma1, Moz, Mia, Moo

Memory layout for symmetric matrices

A symmetric matrix) satisfies the condition/ = M™. The raised T stands for
‘transposed matrix’ and means tha;; = A;; holds for all elements. It follows

that a symmetric matrix is quadratic, that is, it has as many rows as columns.
Furthermore, it follows that by exploiting the symmetry, one needs only slightly
more than half the memory, compared with an arbitrary square matrix. For exam-
ple, for a symmetric matrix with three rows and three columns, it is sufficient to
store the following six instead of nine elements:

Moo, Moy, My, Moz, My2, Moo

An element)M;, must be searched for at position 1 of the container, where the
associated elemently; is located.

To implement all three possibilities in a flexible way using the STL, a class

fixMatrix is defined which provides the most important methods of a matrix,
namely the constructor and methods for determining number of rows and columns,
together with an operator for accessing individual elements, implemented here by
means of the overloaded function operator:

/I excerpt fromk9/a3/matrices.h
template<class MatrixType>
class fixMatrix {
public:
typedef typename MatrixType::ValueType ValueType;
typedef typename MatrixType::IndexType IndexType;
typedef typename MatrixType::ContainerType ContainerType;

fixMatrix(IndexType z, IndexType s)
. theMatrix(z,s,C), C(theMatrix.howmany()) {

}

IndexType Rows() const { return theMatrix.Rows();}

IndexType Columns() const { return theMatrix.Columns();}
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ValueType& operator()(IndexType z, IndexType s) {
return theMatrix.where(z,s);

}
/I ... further methods and operators
private:
MatrixType theMatrix; 1 determines memory layout
ContainerType C; 1 containerC

k

The kind of data storage is undefined; it is determined by the placeholder
MatrixType  which is supposed to supply the required properties. The requirements
for MatrixType  result fromfixMatrix

¢ Data types must be provided for the container, the elements to be stored, and the
data type of the index.

e The methochowmany() is used to determine the size of the container.

e The methodwvhere() , when applied to the object which determines the matrix
type, returns a reference to the sought element.

e Rows() andColumns() methods return the corresponding number.

What is still needed is a proper formulation of the matrix types for the above-
mentioned possibilities of element order. Properties common to all three types are
formulated as a superclass which is parametrized with the value and index types. In
this superclass, the container type is definedeator

#include<cassert> Il used in subclasses
#include<vector>

template<class ValueType, class IndexType>
class MatrixSuperClass {
public:

/I public type definitions

typedef ValueType ValueType;

typedef IndexType IndexType;

/I definevector as container type:

typedef vector<ValueType> ContainerType;

IndexType Rows() const { return rows;}

IndexType Columns() const { return columns;}

protected:
MatrixSuperClass(IndexType z, IndexType s,
ContainerType& Cont)
1 rows(z), columns(s), C(Cont) {

}
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ContainerType &C;

private:
IndexType rows, columns;

h

Because of theprotected  constructor,MatrixSuperClass is an abstract
class. Outside the derived class, no single object of tyjp&ixSuperClass
can be instantiated. With the same result, one could have declared the functions
howmany() andwhere() common to all as purely virtual methods. The resulting
advantage of a compulsory definition of an interface for all derived classes would,
however, be overcome by the cost of an internal management table for virtual func-
tions. This is the reason why this alternative is not implemented. Furthermore, it is
neither usual nor necessary to access matrices via superclass pointers or references.
See also the hint on pag®6.

The reference to the container which is physically located infihatrix
class allows derived classes to access it. The following sections present the outstand-
ing peculiarities.

9.3.1 C memory layout

In the following, r stands for ‘row’ ancc for ‘column.’ CMatrix inherits, as de-
scribed, fromMatrixSuperClass

template<class ValueType, class IndexType>
class CMatrix : public MatrixSuperClass<ValueType,IndexType>

public:
CMatrix(IndexType r, IndexType c,

typename CMatrix::ContainerType& C) // inherited type
. MatrixSuperClass<ValueType,IndexType>(r,c,C) {

}

/I The size of the vector can easily be calculated:
IndexType howmany() const {
return Rows()*Columns();

}

[* The position of an element with the indicesndc is calculated in thevhere()
method. Checking of index limits in the vector container is only possible to a limited
extent, because the check could only be carried out against the entire length (Rows
x Columns). Therefore, eheckedVector is not sufficient, and the index check
is carried out directly inside th@here() method.

*/

ValueType& where(IndexType r, IndexType c) const {
assert(r < Rows() && ¢ < Columns());
return C[r * Columns() + cJ;
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}
}; I/ CMatrix

A simple program shows the application in which tieMatrix class is
parametrized with &Matrix that, for example, assumes values of t§jpat and
an index typent .

/I Excerpt fromk9/a3/divmat.cpp

int main() {
fixMatrix<CMatrix<float,int> > MC(5,7);
cout << " CMatrix " << endl;

/I fill rectangle
for(int i = 0; i < MC.Rows(); ++i)
for(int j = 0; j < MC.Columns(); ++j)
/I application ofoperator()()
MC(i,j) = i + float(j/100.);

/I display rectangle
for(int i = 0; i < MC.Rows(); ++i) {
for(int j = 0; j < MC.Columns(); ++j)
cout << MC(i,j) << '’
cout << endl;

}

/I ... (main() continued)

9.3.2 FORTRAN memory layout

The class for FORTRAN memory layout differs only by the kind of address calcula-
tion:

template<class ValueType, class IndexType>
class FortranMatrix : public MatrixSuperClass<ValueType,
IndexType> {
public:
FortranMatrix(IndexType r, IndexType c,
typename FortranMatrix::ContainerType& C)
. MatrixSuperClass<ValueType, IndexType>(r,c,C) {

}

IndexType howmany() const {
return Rows()*Columns();

}

/* In the address calculation, rows and columns are exchanged in contrast to the
CMatrix class:
*/
ValueType& where(IndexType r, IndexType c) const {
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assert(r < Rows() && ¢ < Columns());
return C[c * Rows() + rJ;

%
A simple example shows the application:

fixMatrix<FortranMatrix<float, int> > MF(5,7);
/I and so on, as above in the C matrix layout

9.3.3 Memory layout for symmetric matrices

There are several differences between this and the two previous classes: the con-
structor checks equality of numbers of rows and columns; the address and memory
requirement calculations also differ.

template<class ValueType, class IndexType>
class symmMatrix
. public MatrixSuperClass<ValueType, IndexType> {
public:
symmMatrix(IndexType r, IndexType c,
typename symmMatrix::ContainerType& C)
: MatrixSuperClass<ValueType, IndexType>(r,c,C) {
assert(r == c¢); 1 matrix must be quadratic

}

/I reduced memory consumption thanks to symmetry
IndexType howmany() const {
return Rows()*(Rows()+1)/2;

}

/I the symmetry is exploited

ValueType& where(IndexType r, IndexType c) const {
assert(r < Rows() && ¢ < Columns());
if (r <= ¢) return C[r + c*(c+1)/2];
else return C[c + r*(r+1)/2];

h
In the example, only one half-triangle of the matrix, including the diagonal, is
equipped with values; nothing further is provided by the available memory. The

subsequent display shows the complete matrix as a square where, obviously, the
elements mirrored at the diagonal are equal.

/I Example of a symmetric matrix, excerpt frd@/a3/divmat.cpp
fixMatrixxsymmMatrix<float, int> > MD(5,5);
cout << "\n symmMatrix " << endl;

/I fill triangle
for(int i = 0; i < MD.Rows(); ++i)
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for(int j = i; j < MD.Columns(); +4+j)
MD(ij) = i + float(j/100.);

/I output square
for(int i = 0; i < MD.Rows(); ++i) {
for(int j = 0; j < MD.Columns(); ++j)
cout << MD(j,j) << ' 7
cout << endl;

9.4 Sparse matrices

A sparse matrix is one whose elements are nearly all zero. Sparse matrices find their
application in simulation calculations of large networks in which mainly neighbor-
ing nodes are connected to each other. Examples include road networks, local and
worldwide computer networks, telephone networks, compound systems for supply-
ing the population with electricity, gas, and water, and many more. A characteristic
feature of all these networks is their large number of nodes.

A matrix M may, for example, represent a road network in which the element
M;; contains the distance in kilometers between towand town;. By convention,

a valuelM;; = 0, (i # j) shall mean that no direct connection between towns
andj exists. A direct connection in this sense is a connection that connects exactly
two towns. A road that touches several towns is therefore not considered as a direct
connection between starting point and end point, but as a compound connection
composed of direct connections. When one-way roads or direction-dependent routes
play arole,M;; # M;; may hold, so thall/ is not necessarily symmetric.

The fact that towns are directly connected with neighboring towns, but that there
are barely angirect connections between distant towns, leads to the effect that the
elements near the matrix diagonal are mostly not equal to 0. The ratio of the number
of elements not equal to 0 and the total number of elements in the matrix is called the
occupation rate. The occupation rate of a high-voltage network for energy supply, for
example, is approximately&=2, whereN is the number of network nodes and?
the number of matrix elements.

Network nodes | Matrix elements | of which #£ 0 | Occupation rate in %

100 10000 500 5
1000 1000000 5000 0.5
10000 100 000000 50000 0.05

Table 9.1: Typical occupation rate in sparse matrices.

With 100 nodes, the matrix would have 10000 elements, of which only about
500 would be not equal 0 (= 5%). Taldel gives an idea of the dependency of the
occupation rate on the number of nodes. It is obvious that it would be a waste of
main and mass storage to store all the zeros. Therefore, typically only the non-zero
elements are stored, together with an index paif) for identification.
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Which abstract data type is best suited for storage of a sparse matrix? Imagine a
column as a map which vialang index returns alouble value. A matrix could
then be a map which vialang index returns a row. Thus, a sparse matrix of double
elements could be described quite simply as:

Il k9lad/sparsel.cpp
#include<map>
#include<iostream>
using namespace std;

/I matrix declaration
typedef map<long, double> doubleRow;
typedef map<long, doubleRow> SparseMatrix;

/* The firstindex operator applied t&&parseMatrix ~ returns a row on which the second
index operator is applied, as shown in the program:

*/
int main() {
SparseMatrix M; 1l see declaration above
M[1][1] = 1.0;
M[1000000][1000000] = 123456.7890;
cout.setf(ios::fixed);
cout.precision(6);
cout << M[1][1] << endl; 1 1.000000
cout << M[1000000][1000000] << endl; I 123456.789000
cout << "M.size() " << M.size() << endl; // 2
/* Unfortunately, this very simple form of a sparse matrix has a couple of ‘minor
blemishes.” Access to a not yet defined element creates a new one:
*
cout << MJ[0][0] << endl;
cout << "M.size() " << Msize() << endl; /I 3
/* This is not desirable, since the pointsavingstorage space. The next flaw is the
uncontrolled access to unwanted positions, once again with the effect of generating
additional elements:
*/
cout << M[-1][0] << endl; Il index error
cout << "M.size() " << M.size() << endl; /I 4
}

The maximum index cannot be defined anyway, because it is given by the number
range oflong . It would, however, be desirable to have a matrix which did not have
these properties and which ensured that elements of value 0 did not contribute to
memory consumption. Therefore, a different approach is presented which, however,
requires more effort.

Here, access to the elements is carried out in a matrix via a pair of indices — row
and column. Thus, an index pair constitutes the key for which the value of the matrix
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element is sought. This is a typical application of an associative container; thus, the
classesnap of the STL andHMapof Chapter7 would be suitable, but in a different
way than described above.

The following solution works with both kinds of map container, controlled by a
compiler switch, but the second container is faster. Obviously, accessing an element
of an associative container is slower when compared to a simple C array. This is the
price that has to be paid for being able, for example, to represent a 1 000 060 000
1000 000 000 matrix on a small PC and calculate with it, provided that the occupa-
tion rate is very, very small.

An example of the usage of a sparse matrix is shown in the following program
segment in which a matrix with ten million rows and columns, that@s;} (fic-
titious) elements is defined. Control of whether the underlying container is to be
taken from the STL is exercised by the swigfL_mapwhich takes effect in the file
sparmat.hlf the line is commented out using //, thiMapcontainer of Chapter is
used.

/I k9/ad/main.cpp

#include<iostream>

/l #define STL_map

#include"sparmat.h" // classsparseMatrix , see below
using namespace std;

/I example of a very big sparse matrix

int main() {
/I ValueTypedouble, IndexTypelong
sparseMatrix<double, long> M(10000000,10000000);

/I Documentation
cout << "matrix with "

<< M.rows() Il 10000000
<< " rows and "
<< M.columns() 1 10000000

<< " columns" << endl;

/I occupy some elements
M[999998][777777] = 999998.7777770;
M[1][8035354] 123456789.33970;
M[1002336][0] 444444444.1111;
M[5000000][4900123] = 0.00000027251;

/I display of two elements
cout.setf(ios::fixed|ios::showpoint);
cout.precision(8);
cout << "M[1002336][0] ="

<< M[1002336][0] << endl;

cout << "M[5000000][4900123] = "
<< M[5000000][4900123] << endl;
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The output is

M[1002336][0] = 444444444.11110002
M[5000000][4900123] = 0.00000027

The small deviations with respect to the above assignments result from format-
ting with precision(8) . Besides row and column number, it is also possible to
output the number of non-zero elements:

cout << "Number of non-zero elements = "
<< M.size() << endl;

cout << "max. number of non-zero elements = "
<< M.max_size() << endl;

To satisfy the need to output all non-zero elements of the sparse matrix for dis-
play or storage, theparseMatrix  class should provide forward iterators:

cout << "Qutput all non-zero elements via iterators\n";
sparseMatrix<double, long>:iterator temp = M.begin();
while(temp !'= M.end()) {

cout << "M[" << M.Index1(temp) 1 i
<" << M.Index2(temp) 1 ]
<< "] = " << M.Value(temp) 1 value
<< endl;

++temp;

1
The above lines lead to the following display

Output all non-zero elements via iterators
M([1][8035354] = 123456789.33970000
M[5000000][4900123] = 0.00000027
M[1002336][0] = 444444444.11110002

The output is only ordered when the map container of the STL is chosen. In the
above example, this is obviously not the case.

9.4.1 Index operator and assignment

Because of the selective storage of matrix elements, some peculiarities must be
considered during the design, particularly of the index and assignment operators.
A matrix element can stand both on the left-hand and on the right-hand side of an
assignment. In both cases, it must be taken into account that the element might not
yet exist in the container, that is, if it has not yet been assigned a value not equal
to zero. Three cases must be distinguished (the matrix elements are to be of type
double ):



9.4.2

SPARSE MATRICES 215

1. Matrix element as Ivaluem]i][j] = 1.3;
In order to analyze it, the instruction must be broken down into its function parts:

sparseMatrix::operator[](i).operator[](j).operator=(1.3);

The first index operator checks the line indefor maintaining the limits, the sec-

ond operator checks the column indexrurthermore, the second index operator
must supply an object that possesses an assignment operator to eéniblea

value into the associative container together with the indices. This object must
have available all necessary information. Whendbeble value is zero, how-
ever,no entry is to be made, but the elemett][j] is to be deleted, provided

it already exists.

As usual in C++, some auxiliary classes are invented for the solution of this prob-
lem. The first class, hameXlix, is the return type of the first index operator. The
second index operator, which checks the column number, is the index operator of
theAux class. It returns an object of typaatrixElement , the second auxiliary
class. The assignment operator of this object caters for the rest, as illustrated by
the following lines:

sparseMatrix::operator[](i) .operator[](j).operator=(1.3);

Aux::operator[](j) .operator=(1.3);

MatrixElement::operator=(1.3);

On the surface, this highly flexible method of proceeding may seem costly. How-
ever, this cost must be compared with the insertion and search processes of the
underlying container; then, the balance looks significantly better. Substituting the
usual index operatarperator[]() with the function operatosperator()()

brings no advantage.

2. Matrix element as rvaluetouble x = MIi][j];
In addition, theMatrixElement  class needs an operator which converts an ob-
ject of typeMatrixElement  into the appropriate value type, in this caisable .

3. Matrix element on both sides1[n][m] = M2[i][j]; , WhereMlandM2may
be identical.
The MatrixElement  class needs a second assignment operator with the argu-
mentconst MatrixElement&

Hash function for index pairs

In this section, the filsparmat.his presented which contains the classes and auxil-
iary classes discussed above. It is included#ii@lude into a program which is
designed to work with sparse matrices (see example on p&ge The file begins
with some preprocessor directives for determining the underlying implementation.
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/I File k9/ad/sparmat.htemplates for sparse matrices
#ifndef SPARSEMATRIX_H
#define SPARSEMATRIX_H

/I selection of implementation

#ifdef STL_map I defined inmain()
#include<map>

#include<cassert>

telse

#include"hmap.h"

[* If at this point theHMapcontainer of Chapter is chosen, a function for calculating the
hash table addresses is needed. As opposed to the hash functions described up to now,
not just one value, but two are used for the calculation. Therefore, the function operator
of the PairHashFun class takes a pair as argument. The address calculation itself is
simple, but sufficient for the examples in this book.

*/

template<class IndexType> //int ,long orunsigned
class PairHashFun {
public:
PairHashFun(long prime=65537)
/I Another prime number is possible.
/I for example, 2111 for smaller matrices.
. tabSize(prime) {
}

/I Address calculation withwo values
long operator()(
const std::pair<indexType, IndexType>& p) const {
return (p.first + p.second) % tabSize;

}

long tableSize() const { return tabSize;}

private:
long tabSize;
h
#endif Il STL_map or not

9.4.3 Class MatrixElement

An element stored in a container has a determined type denoted in the STL by
value_type . In this case, thealue_type is a pair consisting of the key and the
associated value, where the key itself is a pair of two indices. In the class described
below, a pair of indices is defined as tyipeexPair

template<class ValueType, class IndexType,
class ContainerType>
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class MatrixElement {
private:
ContainerType& C;
typename ContainerType::iterator I;
IndexType row, column;

public:
typedef std::pair<indexType, IndexType> IndexPair;
typedef MatrixElement<ValueType, IndexType,
ContainerType>& Reference;

/* The constructor initializes the private variables with all information that is needed.
(Normally, the private objects are placed at the end of a class definition. For rea-
sons of contextual consistency, this rule is sometimes not observed.) The container
itself is located in thesparseMatrix class; here, the reference to it is entered.

If the passed indices for row and column belong to an element not yet stored in
the container, the iterator has the vatiend()

*/

MatrixElement(ContainerType& Cont,
IndexType r, IndexType c)
: C(Cont), I(C.find(IndexPair(r,c))),
row(r), column(c) {

}

ValueType asValue() const {
if(l == C.end())
return ValueType(0);
else
return (*1).second;

}

operator ValueType () const  {// type conversion operator
return asValue();

}

/* According to the definition of the sparse matrix, O is returned if the element is not
present in the container. Otherwise, the result is the second part of the object of
typevalue_type stored in the container. The type conversion operator fulfils
the requirements of poiton page215 The assignment operator (see pdimn
page215) is structured in a slightly more complicated way.

*/

Reference operator=(const ValueType& X) {

if(x !'= ValueType(0)) { 1 not equal to 0?

[* 1f the element does not yet exist, it is put, together with the indices, into
an object of typevalue_type  and inserted witlinsert()

i?/(l == C.end()) {
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assert(C.size() < C.max_size());
I = (C.insert(typename ContainerType
:value_type(IndexPair(row,column), X))

).first;
}
else (*1).second = x;

}

[*insert() returns a pair whose first part is an iterator pointing to the in-
serted object. The second part is of tyeol and indicates whether the in-
sertion took place because no element with this key existed. This is, however,
not evaluated here because, due to the preconditie= C.end()) ,the
second part must always have the value . If, instead, the element already
exists, the value is entered into the second part oféthee_type  object.

If the value is equal to 0, then to save space the element is deleted if it existed.

*/

else /I x=0

if(l '= C.end()) {
C.erase(l);
I = C.end();
}

return *this;

}

/* Point 3 on page215 requires an assignment operator which in turn requires a
reference to an object of typdatrixElement . When both the left- and right-
hand sides are identical, nothing has to happen. Otherwise, as above, it has to be
checked whether the value of the right-hand element is O or not. The resulting
behavior is described together with the above assignment operator, so that here it
is simply called:

*/

Reference operator=(const Reference rhs) {

if(this !'= &rhs) { 1 not identical?
return operator=(rhs.asValue()); // see above

}

return *this;

}

}, Il classMatrixElement

9.4.4 Class sparseMatrix

Depending on the selected implementation, the data types for the container and other
aspects are set:

template<class ValueType, class IndexType>
class sparseMatrix {
public:
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typedef std::pair<indexType, IndexType> IndexPair;
/I The switchSTL_map controls the compilation:

#ifdef STL_map
typedef std::map<IindexPair, ValueType,
std::less<IndexPair> > ContainerType;
else
typedef br_stl::HMap<IndexPair, ValueType,
PairHashFun<IndexType> > ContainerType;
#endif

typedef MatrixElement<ValueType, IndexType,
ContainerType> MatrixElement;

public:
typedef IndexType size_type;

/* The constructor initializes only the row and column information. The container is
created by its default constructor, where in the case of hash implementation, the
size of the container is given by the hash function object of BaeHashFun
(seetypedef above).

*

private:
size_type rows_, columns_;
ContainerType C;

public:
sparseMatrix(size_type r, size_type c)
: rows_(r), columns_(c) {

}

/* The following list of methods, besides determining the number of rows and
columns, provides the common container methods, which are not discussed in
detail.

*/

size_type rows() const { return rows_;}
size_type columns() const { return columns_;}

/I usual container type definitions

typedef typename ContainerType::iterator iterator;

typedef typename ContainerType::const_iterator
const_iterator;

/I usual container functions
size_type size() const { return C.size();}
size_type max_size() const { return C.max_size();}
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iterator begin() { return C.begin();}
iterator end() { return C.end();}

const_iterator begin() const { return C.begin();}
const_iterator end() const { return C.end();}

void clear() { C.clear();}

class Aux {

kh

public:
Aux(size_type r, size_type maxs, ContainerType& Cont)
: Row(r), maxColumns(maxs), C(Cont) {

}

[* After checking the number of columns, the index operatofAwx returns a
matrix element which is equipped with all the necessary information to carry
out a successful assignment.

*/

MatrixElement operator[](size_type c) {

assert(c >= 0 && ¢ < maxColumns);
return MatrixElement(C, Row, c¢);

}

private:
size_type Row, maxColumns;
ContainerType& C;

[* The index operator of theparseMatrix  class returns the auxiliary object de-

*/

scribed on pagé15 whose class is defined as nested insigarseMatrix

Aux operator[](size_type 1) {

}

/*

*/

assert(r >= 0 && r < rows());
return Aux(r, columns(), C);

Up to this point, from a functionality point of view, theparseMatrix

class is sufficiently equipped. However, to avoid writing such horrible things as
“(*1).first.first ' for accessing the elements, some of the following auxil-
iary functions determine the indices and associated values of an iterator in a more
readable way. Their application can be seen in the example or2ddge

size_type Indexl1(const_iterator& |) const {

}

return (*1).first.first;

size_type Index2(const_iterator& 1) const {

}

return (*1).first.second;



9.4.5

SPARSE MATRICES 221

ValueType Value(const_iterator& 1) const {
return (*1).second;
}
b /I classsparseMatrix
#endif /[ file sparmat

From the point of view of the information needed in the auxiliary functions, it
is not necessary to formulate these functions as member functions. It would also be
possible to create template functions which are not members. These, however, would
need an extra parameter to determine the type of the index or the values, thus the first
way is followed.

Run time measurements

Owing to its more complicated storage, access to an element of a sparse matrix takes
significantly longer than access to elements of the matrices discussed in the previous
sections.

Figure9.1shows how the access time to a matrix element depends on the number
N of elements already in the container. The access time depends on the kind of
computer, the operating system, and the compiler and its settings. The measurements
were carried out using a 233 MHz Pentium PC, the egcs-1.0.2 C++-Compiler and
the Linux operating system.

The dot sequences show the trend. The round dots of nearly constant access time
apply to the implementation of theparseMatrix  class with aHMapcontainer; the
ascending sequence of square dots shows the linear dependency of the access time
from the logarithm of the numbe¥ of already stored elements of the sorted map
container of the STL.
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access time in ps
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Figure 9.1: Access times for elements of a sparse matrix.



External sorting

10.1

Summary:External sorting is needed if a file cannot be sorted in memory because
available memory is too small or the file is too large, and so mass storage must
be used as a medium for sorting. The elements of the STL are used to construct an
iterator for sorted subsequences which is used for external sorting. A priority queue
can accelerate the sorting process.

To start with, the following questions should be answered to establish whether ex-
ternal sorting can be avoided:

e Is the entire available RAM used as virtual memory without having to swap
memory pages?

e Can keys and an index file be used? For example, an address file could be sorted
by using only the names for sorting. Then, the index file contains only the sorted
names and, for each name, a pointer to the location of the complete address file,
where all other information, such as street and town, can be found.

Copy processes in mass storage are very expensive compared to copy processes
in RAM. When memory access takes 50 nanoseconds, and hard disk access 10
milliseconds, then the mass storage is slower by a factor of 200000, if no buffer
is used. When all else fails, it could be helpful to divide the problem into smaller
subproblems:

1. The large file ofNV elements is split inta small files of approximately equal size,
wheren is chosen in such a way that the small file fits into memory.

2. All small files are sorted separately.

3. The sorted files are merged back into one large file. Seétiorldescribes how
two sorted subsequences are merged into one single sorted sequence.

External sorting by merging

Step 3 above hardly consumes any memory becauseroelgments are read and
compared. However, the operating system creates a buffer for each open file, which
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can amount to a considerable quantity of memory. Frequently, the maximum number
of open files allowed is also insufficient for this purpose.

Therefore, the process is modified: the large filés only split into two tempo-
rary auxiliary filest; andt, which are again put together in a large file with a higher
degree of sorting. The fileB, F’, and so on are the same; they are reused. The same
applies tat; andt,. Therefore, someone with a little foresight creates a backup copy
of F.

This process is repeated with the new file until sorting is achieved (see Figure
10.1). Thus, you only need a total of three files. You could, however, take more than
two files for splitting. The only important point is that the temporary files contain
sorted subsequences which are merged into each other. A sorted subsequence is also

calledrun.
AR j&k
| F < — P =< -
{ \ { \ /

split merge split merge

Figure 10.1: External sorting with two runs shown.

As an example, an unsorted sequence of 17 numbers is to be sorted in ascending
order into a file. The numbers are:

F: 13447339993761712681114151

This sequence is split into the auxiliary files in such a way that sorted subse-
guences are maintained. These are shown by way of square brackets:

F: [1344][7][33999][376171][268 1114 15][1]
Splitting yields:

t1: [1344][33999][268 11 14 15]
to: [7][37 61 71][1]

The first two subsequencesigfcan be considered amesorted subsequence:

F: [1344][7][33999][37 61 71][26 8 11 14 15] [1]
t1: [1344][33999][268 11 14 15]
ts: [7376171][1]

Now, the subsequences of the auxiliary files are merged, resulting in the new file
F. Merging is carried out in the sense of Secti®b.4 when one subsequence is
exhausted, the remainder of the other subsequence is copied.



EXTERNAL SORTING BY MERGING 225

merge:
F: [71337446171][133999][268 11 14 15]

Further split and merge operations yield:

split:
t;: [71337446171][268111415]
ty: [133999]
merge:
F: [13379133744617199][268111415]
split:
t1: [13379133744617199]
ty: [268111415]
merge:
F: [12336789111314153744617199]

Thus, only three runs with one split and one merge process each are needed. A
closer analysis shows that for a file 8f elements, a total of aboldg, N — 1 runs
is needed. Each run meanscopy processes (read + write), so that the total cost is
O(N log N). Later, we will see how we can accelerate this process. Those who find
the description too brief should refer to the ‘essentiél )

Thus, we have three files, which can also be magnetic tapes, and two passes,
namely splitting and merging. Therefore, the method is called 3-way 2-pass sort-
merge. When we talk about merging and tapes, it is understood that only sequential
access to individual elements is possible. An algorithm for external sorting must take
this into account.

The followingmain() program calls a function for external sorting. The file is
arbitrarily calledrandom.datand contains numbers of tyjng .

/I kl1lO/extsort.cpp Sorting of a large file
#include"extsort.h" 1 see below
#include<functional> Il greater<> , less<>
using namespace std;

int main() {
Il less<long> Comparison; 1 descending
std::greater<long> Comparison; i ascending

std::istream_iterator<long> suitable_iterator;

std::cout << externalSorting(

suitable_iterator, // type of file
"random.dat", 1! file name

"\n", 1! separator
Comparison) /I sorting criterion

<< " sorting runs" << std::endl;

}

The function returns the number of necessary runs. Since no information on the
type of elements can be derived from the file name, a suitable iterator is passed
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whose type contains the necessary information. The separator string is inserted be-
tween two elements which are written to a temporary file, because this example uses
the >> operator for input and the< operator for output. The comparison object
determines the sorting criterion. The components needed for this algorithm are de-
scribed individually.

One important component is an iterator that works on a stream and recognizes
subsequences. This iterator will be calkgbsequencelterator . Itinherits from
the classstream_iterator which is described on pags8. The subsequence iter-
ator behaves in the same way assaream_iterator , but in addition determines
whether the elements of the stream are sorted according to the sorting critenian
This requires a comparison between a read object and the previous one which here
is a private variable namemteviousValue

/I Template classes and functions for sorting of large files
/I k10/extsort.h

#ifndef EXTSORT_H

#define EXTSORT_H

#include<fstream>

#include<algorithm>

#include<iterator>

template<class T, class Compare>
class Subsequencelterator : public std:istream_iterator<T>

public:
typedef T value_type; // public type

Subsequencelterator()
: comp(Compare()) {

}

Subsequencelterator(std::istreamé& is, const Compare& c)
. std::istream_iterator<T>(is), comp(c), sorted_(true),
previousValue(std::istream_iterator<T>::operator*()) {

}

[* The private attribute@reviousValue  can be initialized withvalue , because
the initialization of the base class subobject has already read a value. The follow-
ing ++ operators now ensure that the end of a sorted subsequence is recognized by
setting the private variablgorted_ . A subsequence is in any case also closed
when the stream is terminated. This is checked by comparing the subsequence
iterator (i.e*this ) to an end-iterator which is generated by the default construc-
tor.
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It is important to write !lcomp(previousValue, value) and not
comp(value, previousValue) . The second notation would erroneously
already signal the end of a subsequence whenewual elements follow each
other. You can easily imagine this by assuming, for exam@lempare ==
y less<int>
Subsequencelterator& operator++() {
std::istream_iterator<T>:.operator++();
const T& value
= std::istream_iterator<T>::operator*();
sorted_ = Icomp(previousValue, value) // right order
/I end not yet reached?
&& *this !'= Subsequencelterator<T, Compare>();
previousValue = value;
return *this;

}

Subsequencelterator operator++(int) {
Subsequencelterator tmp = *this;
operator++();
return tmp;

}

bool sorted() const { return sorted_;}

/* When the end of a subsequence is recognized, the internal flag for this can be reset
with nextSubsequence()  to process the next subsequence:

*/
void nextSubsequence() {
sorted_ = *this != Subsequencelterator<T, Compare>();
}
Compare Compareobject() const { return comp;}
/*Compareobiject() supplies a copy of the internabmp object. In addition to
the inherited variables, the following ones are needed:
*/
private:
Compare comp;
bool sorted_;
T previousValue;
b
Next, the functiorexternalSorting() is described, which constitutes the user

interface inmain() . This function determines the type of the values by means of the
iterator_traits -class.

template<class Istreamlterator, class Compare>
int externalSorting(Istreamliterator& Inputlterator,
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const char *SortFile,

const char *Separator,

const Compare& comp) {
typedef typename std::iterator_traits<Istreamlterator>

value_type value_type;
bool sorted = false;
/[ arbitrary names for intermediate files
const char *TempFilel = "esort001.tmp",
*TempFile2 = "esort002.tmp";

int Run = 0; I number of split/merge-runs
do {
std::ifstream Inputfile(SortFile);
Subsequencelterator<value_type, Compare>
Filelterator(Inputfile, comp);

/* The file to be sorted must exist. A suitable subsequence iterator for reading
is passed to the functicsplit() which writes sorted subsequences of the
main file F', as it was called earlier, into the two auxiliary filgsandt.

*/

split(Filelterator, TempFilel, TempFile2, sorted);

Inputfile.close();

/* During this processplit() determines whethdr is already sorted. Only
if this is not the case are further steps necessary. These steps consist in gener-
ating subsequence iterators for the functmergeSubsequences() and
opening the output filé”'. Then, the subsequences are merged.
*/
if(sorted) {
Il prepare for merging
std::ifstream Sourcel(TempFilel);
std::ifstream Source2(TempFile2);

Subsequencelterator<value_type,Compare>
11(Sourcel,comp),
12(Source2,comp),
End;

/I open SortFile for writing

std::ofstream Output(SortFile);

std::ostream_iterator<value_type>
Result(Outputfile, Separator);

mergeSubsequences(l1, End, 12, End, Result, comp);

++Run;
}
} while(Isorted);
return Run;



EXTERNAL SORTING BY MERGING 229

The functionmergeSubsequences()  has the same interface as the standard
functionmerge() (see page.30). merge() cannot be used becauserge() ex-
tracts one element at a time via the input iterators accordingrbp, but ignores the
subsequence structure.

/I SubSeq|terator is a placeholder for the data type of a subsequence-iterator
template<class SubSeqlterator>
void split(SubSeqlterator& Inputlterator,
const char *Filenamel,
const char *Filename2,
bool& sorted) {
std::ofstream Targetl(Filenamel);
std::ofstream Target2(Filename2);
typedef typename SubSeqlterator::value_type value_type;

std::ostream_iterator<value_type> Outputl(Targetl, "\n");
std::ostream_jterator<value_type> Output2(Target2, "\n");
SubSeqlterator End;

/* The functioning is quite simple: as long as the input stream supplies a sorted sub-
sequence, all data is written to an output stream. Once the end of a sorted subse-
quence is reachedipflop is used to switch to the other output stream. In or-
der to save the caller unnecessary work, the varigdated remembers whether
there has been any violation of the sorting order in the input stream.

*/

sorted = true;

bool flipflop = true;

while(Inputlterator = End) {

while(Inputlterator.sorted())
if(flipflop) *Outputl++ = *Inputlterator++;
else *Qutput2++ = *Inputlterator++;

if(Inputlterator !'= End) {
sorted = false;
flipflop = 'flipflop;
Inputlterator.nextSubsequence();

}

[* After splitting a file into two temporary auxiliary files, the file is rebuilt on a ‘higher
sorting level’ by merging the auxiliary files.
*/
template <class Subsequencelterator, class Outputlterator,
class Compare>
void mergeSubsequences(Subsequencelterator firstl,
Subsequencelterator lastl,
Subsequencelterator first2,
Subsequencelterator last2,
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Outputlterator result,
Compare& comp) {

/I as long as both the auxiliary files are not exhausted
while (firstl != lastl && first2 != last2) {
/I merge sorted subsequences
while(firstl.sorted() && first2.sorted())
if (comp(*firstl, *first2))
*result++ = *first2++;
else
*result++ = *firstl++;

/I At this point, (at least) one of the subsequences is terminated.
/I Now copy the rest of the other subsequence:
while(firstl.sorted()) *result++ = *firstl++;
while(first2.sorted()) *result++ = *first2++;

/I Process the next subsequence in both auxiliary files,
/I provided there is one:

firstl.nextSubsequence();

first2.nextSubsequence();

}

/I At least one of the temporary files is exhausted.
/l Copy the rest of the other one:

std::copy(firstl, lastl, result);

std::copy(first2, last2, result);

10.2 External sorting with accelerator

External sorting is designed only for sorting processes where the internal memory
of the computer is not sufficient. However, (almost) no memory was used in the
above program. The best solution for external sorting is to employ as much internal
memory as possible.

An ideal tool for this purpose is the priority queue presented in Seétidit has
the property of putting all incoming elements into the correct position, so that when
one element is removed, the one with the highest priority according to the sorting
criterion is immediately available, for example, the greatest element.

If the priority queue can takey, elements, then for all input fileB' with IV,
or less elements, only one sorting run is needed. For larger input files, the priority
gueue allows longer sorted subsequences, so that fewer runs are needed. It is evident
that the effect of a priority queue diminishes when the subsequences to be processed
are longer than the size of the priority queue. For this reason, the effect of a priority
queue is that in the first run, subsequences of a lergfli, are already generated,
thus savinglog, N, — 1) runs. At least one run is needed.
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The complexity of external sorting does not change when a priority queue is
employed. Since, however, copy operations to mass storage are time-consuming, the
saving of constanti¢g, N, — 1) runs is very desirable.

When placing and using the priority queue in the data flow, care must be taken
not to use it directly as a sorting filter. The reason for this is that the initial fast
generation of long subsequences would become impossible. tip

Let us assume that the number of elements in a file substantially extgeu
that the sorting criterion is to generate a descending sequence, that is, the greatest
element is removed from the priority queue. This removal frees a place, and the next
element is inserted into the priority queue. This element, however, can be greater
than the element just removed, so that the subsequence of removed elements is im-
mediately terminated.

Figure10.2shows that to achieve the longest possible subsequences, the priority
gueue is used inside the splitting process.

split

N\
Y
priority-queue | N
’ g -
\ yi

merge

Figure 10.2: External sorting with priority queue.

The decisive factor is that the read elements are not simply passed sorted. Instead,
reading of an element greater than the one that stands at the top of the priority queue
must lead to the whole priority queue being emptied. Only then can the new element
be inserted. As can be seen from the figure, this involvessplit) function
whose modified variation is shown as a conclusiginclude<algorithm> can
now be omitted, sinceopy() is no longer used. Instead,

#include<vector>
#include<queue>

are required if the priority queue is to be implemented with a vector. Since the pri-
ority queue must know not only the data type of the elements, but also the sorting
criterion, the function determines the necessary types from the type of the passed
subsequence iterator.

In the example below (functiosplit() ), the size of the priority queue is speci-
fied as 30 000: depending on the computer type, memory size, and operating system,
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it should, on the one hand, be set as large as possible; on the other hand, it should
still be small enough not to need memory swapping to hard disk.

There is no member functiotapacity() for the priority queue of the STL,
which would return the capacity of the underlying container. Unfortunately, such a
function is not easy to write, because it strongly depends on the operating system.

How much space can be allocated to the program depends on the current usage
of the computer by other users and programs, and can therefore only be determined
at a given time. Information on the amount of available memory can be given only
by the operating system. Therefore, it is best to allocate the program a guaranteed
amount of memory at the call.

template<class SubSeqlterator>
void split(SubSeqlterator& Inputlterator,
const char *Filenamel,
const char *Filename2,
bool& sorted) {
typedef typename SubSeqlterator::value_type value_type;
typedef typename SubSeqlterator::compare_type Compare;

const size t maxSize = 30000; // maximize, see text

/I The size of the priority queue is dynamically increased
/I up to the given limit (see below)
std::priority_queue<value_type,
std::vector<value_type>,
Compare>
PQ(Inputlterator.Compareobject());

std::ofstream Targetl(Filenamel);

std::ofstream Target2(Filename2);
std::ostream_iterator<value_type> Outputl(Targetl, "\n");
std::ostream_iterator<value_type> Output2(Target2, "\n");
SubSeqlterator End;

sorted = ftrue;
bool flipflop = true; 1 for switching the output

while(Inputlterator = End) {
/I fill priority queue
while(Inputlterator !'= End && PQ.size() < maxSize) {
if(Inputlterator.sorted())
sorted = false;
PQ.push(*Inputlterator++);
}

while('PQ.empty()) {
/I Write to output files. Selection of file
/I by way of the variabldlipflop
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if(flipflop) *Outputl++ = PQ.top();
else *Output2++ = PQ.top();

/I create space and fill if needed
PQ.pop();
if(Inputlterator !'= End) {
if('Inputlterator.sorted())
sorted = false;

/I The next element is inserted only if it does not
/I violate the subsequence ordering.
if('"Inputlterator.Compareobject()
(PQ.top(), *Inputlterator))
PQ.push(*Inputlterator++);

}

/I The priority queue is now empty; the sorted sequence
/I output is terminated. For outputting the next sorted

I/l sequence we switch to the next channel.

flipflop = !flipflop;

}

A final hint: the last run generates a completely sorted file. This is, however,
determined only by the following split, where one of the temporary files is empty
and the other one is identical to the result file. The above algorithm could be tip -
timized, so that the last split is no longer needed. For this, it would be necessary
to determine during merging whether the result is sorted. One method of achieving
this is to construct a more ‘intelligent’ output iteratesult ~ which determines this
information.






Graphs

Summary:Graphs and their associated algorithms are widely used for the process-
ing of problems in information science. A common problem for which graphs are
suited is finding the shortest path between two given points. Another problem is cal-
culating a minimal path that passes a number of points. This is an interesting prob-
lem for a carrier who has to deliver goods to a series of customers in different towns.
Another typical application is the maximization of message or material throughput
in a network. The components of the STL allow the construction of graphs for a
multitude of applications and of a library of suitable fast algorithms. This chapter
deals with the structure of a graph class on the basis of STL components and a
selection of algorithms (shortest paths, topological sorting).

A graph consists of a set of vertices and edges that connect two vertices. If an edge
is assigned a direction, the graph is caltBebcted otherwise it is undirected. Fig-

ure 11.1 shows one directed and one undirected graph with five vertices and five
edges each.

Figure 11.1: Directed and undirected graphs.
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If an edge leads from a vertekxto a vertexB, A is called thepredecessoof B
andB is called thesuccessopf A. A sequence of vertices, e, ..., e is called a
pathif each vertexe; with j = 2, ..., k is successor of vertex_;.

There are different ways to represent a graph. The most frequently used represen-
tations areadjacency matricefl_atin adiacere= lie next to, border) anddjacency
lists. In the adjacency matrix, a ‘1’ at positidi, j) means that there is an edge from
vertexi to vertexj. Each edge can be equipped with numbers which represent costs
or distances. In this case, instead of the ‘1, the corresponding numbers are entered.
Furthermore, there must be one special number (hormally 0) which means that no
connection exists between the two vertices.

The adjacency matrix of an undirected graph is symmetric with regard to
the main diagonal. Tablé1.1 shows the adjacency matrices corresponding to
Figurell.l

Vertex | 12345 Vertex | 12345
1101110 1101110
2100100 2110100
3100000 3111000
4100001 4110001
5/00000 5100010

Table 11.1: Adjacency matrices for directed and undirected graphs.

The second common representation using adjacency lists consists of a vector or
a list of all vertices, where for each vertex a sublist with all successive vertices exists
(Figurell.2.

This kind of representation has the advantage that only memory which is actually
required is used and that, notwithstanding, the successors of each vertex can be found
very quickly. For this reason, we will use the list representation, albeit in a slightly
modified form.

Instead of taking lists for the references, as shown in Figir the information
about successors and edge values is stored in amagf¥ he key to an edge value is
the number of a successive vertex. The advantage this gives over a list is that during
the construction or reading of the graph, we can be certain that no multiple edges
will exist. Thus, a vector element consists of a pair: the vertex and the set of its
SuUCCessors.

There is an alternative to this construction: imagine a graph as a map in which
the set of successors and the edge values are accessed via a vertex, in analogy to the
simple model of the sparse matrix on pade. If the vertices are of typstring
and the edge values of tyjpeuble , a graph type could be defined as follows:

typedef map<string, double> Successor;
typedef map<string, Successor> GraphType;

Now, the definition of vertices and edge values is very simple:

string vertex1(“firstVertex");
string vertex2("secondVertex");
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Figure 11.2: Adjacency lists.

GraphType theGraph;
theGraph[vertex1][vertex2] = 4.568;

This solution is not favored for various reasons:

e In many instances, the information about whether a graph is directed plays a role
and should therefore be included.

e Inadvertent access to an undefined vertex with[theoperator leads to a new
vertex being created without an error message (see pge

e At each access to a vertex, a search process is carried out. The process is fast
(O(log N)), but a direct access is even faster.

e Sometimes an order is needed, for example, the order of vertices in a shortest
path. A vector of vertex numbers is a suitable and, above all, very simple tool for
this purpose. Solutions based on ®mphType of the above listing are more
expensive from a programming point of view.

The complexity of programs involving graphs is generally expressed in relation
to the number of vertices and edges.
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11.1

Edges without weighting?

Edges can be equipped with parameters to express distances or costs. o case
parameters are needed, an empty class with a minimum set of operations is defined
as a placeholder:

struct Empty {
public:
Empty(int=0) {}
bool operator<(const Empty&) const { return true;}

h

inline std::ostream& operator<<(std::ostream& os,
const Empty&) {
return os;

}

inline std::istream& operator>>(std::istream& is, Empty& ) {
return is;

}

With this class, it is possible to formulate a uniform class for graphs, together
with auxiliary routines for input and output, valid for graphs with and without
weighted edges.

Class Graph

According to Figurell.2 the classGraph consists of a vectov of all vertices. As
the advanced private part shows, the additional information about whether the graph
is directed or not is present. An undirected graph is represented by the fact that for
each edge, a second edge exists in the opposite direction. This takes up memory for
what, in the final analysis, is redundant information, but has the advantage that each
successor of an arbitrary vertex can be reached quickly.

The class is equipped with various checking methods whose diagnostic messages
are output on the channel pointed to by the ostream pagpdiet.

template<class VertexType, class EdgeType>
class Graph {
public:
/I public type interface
typedef std::map<int, EdgeType> Successor;
typedef std::pair<VertexType, Successor> vertex;
typedef checkedVector<vertex> GraphType;
typedef typename GraphType::iterator iterator;
typedef typename GraphType::const_iterator const_iterator;

private:
bool directed;
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GraphType C; /Il container
std::ostream* pOult;

public:
/* The following constructor initializes the output channel wédrr . A parameter
must be specified as to whether the graph is directed or undirected, because this is
an essential property of a graph.
*
Graph(bool g, std::ostream& os = cerr)
. directed(g), pOut(&os) {

}

bool isDirected() const { return directed;}

/* A graph is a special kind of container to which something can be added and whose
elements can be accessed. Therefore, in the following typical container methods,
their extents are limited to those needed for the examples. Thus, there is no method
for explicit removal of a vertex or an edge from the graph.

*

size_t size() const { return C.size();}
iterator begin() { return C.begin();}
iterator end() { return C.end();}

/I access to vertex

vertex& operator[](int i) {
/I the access is safe, becawsis acheckedVector
return CIi];

}

/I addition of a vertex
int insert(const VertexType& e);

/I addition of an edge betwe&i ande2
void insert(const VertexType& el, const VertexType& e2,
const EdgeType& Value);

/I addition of an edge between vertices no. i and j
void connectVertices(int i,int j,const EdgeType& Value);

[* The following methods are useful tools for displaying information on a graph and
checking its structure. These methods are described in detail in the next sections.

*/

/I checking of a read data model

/I output on the channel passedcteeck()

void check(std::ostream& = std::cout);

/I determine the number of edges
size_t CountEdges();
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/I determine whether the graph contains cycles

/I and in which way it is connected

void CyclesAndConnectivity(std::ostream& = std::cout);
b /Il Graph

The last method combines two tasks, because they can be carried out in a single run.
The terms are explained in the description of the methods.

11.1.1 Insertion of vertices and edges

To avoid ambiguities, a vertex is entered only if it did not previously exist. The
sequential search is not particularly fast; however, this process is heeded only once
during the construction of the graph.

template<class VertexType, class EdgeType>
int Graph<VertexType,EdgeType>::insert(
const VertexType& e) {
for(int i = 0; i < size(); ++i)
ifle == C[i].first)
return i;

/I if not found, insert:
C.push_back(vertex(e, Successor()));
return size()-1;

}

An edge is inserted by first inserting the vertices, if they are needed, and by
determining their positions. The edge construction itself is carried out by the func-
tion connectVertices() . It is passed the vertex numbers and, because there is no
search procedure, it is very fast.

template<class VertexType, class EdgeType>
void Graph<VertexType,EdgeType>::insert(
const VertexType& el,
const VertexType& e2,
const EdgeType& Value) {
int posl = insert(el);
int pos2 = insert(e2);
connectVertices(posl, pos2, Value);

}

template<class VertexType, class EdgeType>
void Graph<VertexType,EdgeType>::connectVertices(
int posl, int pos2, const EdgeType& Value) {
(C[posl].second)[pos2] = Value;

if('directed) // automatically insert opposite direction too
(C[pos2].second)[posl] = Value;
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11.1.2 Analysis of a graph

The methoctheck() sets the output channel and calls all other checking methods.

template<class VertexType, class EdgeType>
void Graph<VertexType,EdgeType>::check(std::ostream& o0s) {
0s << "The graph is ";
if(lisDirected())
0s << "un";

0s << "directed and has "
<< size() << " vertices and "
<< CountEdges()
<< " edges\n";
CyclesAndConnectivity(os);
}

Determining the number of edges

Determining the number of edges of a given graph is simple: all that is required is
to add the lengths of all adjacency lists. Undirected graphs are represented by two
opposed edges for each connected pair of vertices; thus, in this case, the sum is
halved.

template<class VertexType, class EdgeType>

size_t Graph<VertexType,EdgeType>::CountEdges() {
size_t edges = O;
iterator temp = begin();

while(temp != end())
edges += (*temp++).second.size();

if('directed)
edges /= 2;
return edges;

}

Cycles, connection, and number of components

A graph has aycleif there is a path with at least one edge whose first node is
identical with the last node.

An undirected graph isonnectedf each vertex can be reached from each of
the other vertices. For directed graphs, a distinction is made between a strong and
a weak connection. A directed graph has a strong connection if a path exists from
each vertex to each of the other vertices, that is, all vertices are mutually reachable.
The connection is weak if an arbitrary vertdxs reachable from a verteR, but not
vice versa.

A graph is not connected if it is composed of two or more non-connected com-
ponents. Figuré1.3shows some examples.
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Figure 11.3: Different types of graph.

CyclesAndConnectivity() works with adepth-first searchStarting with an
initial vertex, a successor is visited, then the successor of this successor, and so on,
until no further successor is found. Then the next successor of the initial vertex is
visited, applying the same process again. A breadth-first search, in contrast, pro-
cesses all successors of the initial vertex in the first step, without considering their
successors. Only then is the second level of successors tackled.

Unlike as suggested in ) No recursion is employed because,
depending on the system, even smaller graphs can cause a stack overflow. For undi-
rected graphs, the stack depth corresponds to the number of edges + 1. In a user-
defined stack, only the necessary information is stored, not all sorts of data used for
function call management, such as local variables, return addresses, and so on.

template<class VertexType, class EdgeType>
void Graph<VertexType, EdgeType>::CyclesAndConnectivity(
std::ostream& 0s) {
int Cycles = 0;
int ComponentNumber = 0;
std::stack<int, std::vector<int> >
verticesStack; // vertices to be visited

/* To prevent multiple visits to vertices in possible cycles, which entails the risk of
infinite loops, the vertices are earmarked as having been visited or as finished
being processed. This is executed by the vedtatexState

*/
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/I assign all vertices the state ‘not visited’
enum VertStatus {notVisited, visited, processed};
std::vector<VertStatus> VertexState(size(), notVisited);

[* If, starting from one vertex, an attempt is made to reach all other vertices, success
is not guaranteed in weakly or non-connected graphs. Therefore, each vertex is
visited. If it is found that a vertex has already been visited, it does not need to be
processed any further.

*/

/I visit all vertices
for(size_t i = 0; i < size(); ++i) {
if(VertexState[i] == notVisited) {
ComponentNumber++;
/I store on stack for further processing
verticesStack.push(i);

/I process stack
while(!verticesStack.empty()) {
int theVertex = verticesStack.top();
verticesStack.pop();
if(VertexState[theVertex] == visited)
VertexState[theVertex] = processed,;
else

if(VertexState[theVertex] == notVisited) {
VertexState[theVertex] = visited;
/I new vertex, earmark for processed mark
verticesStack.push(theVertex);

/* If one of the successors of a newly found vertex bears the
visited  mark, the algorithm has already passed this point
once, and there is a cycle.

*/

/I earmark successors:

typename Successor::const_iterator start =
operator[](theVertex).second.begin();

typename Successor::const_iterator end =
operator[](theVertex).second.end();

while(start = end) {
int Succ = (*start).first;
if(VertexState[Succ] == visited) {
/I someone’s been here already!
++Cycles;
(*pOut) << "at least vertex "
<< operator[](Succ).first
<< " lies in a cycle\n";
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[* Otherwise, the vertex has already been processed and
therefore should not be considered again, or it has not yet
been visited and is earmarked on the stack.

*/

if(VertexState[Succ] == notVisited)
verticesStack.push(Succ);
++start;
}
}
} /I stack empty?
} I'if(VertexState
} I/ for()

/* Now we only need the output. In case of directed, weakly connected graphs, the
algorithm counts several components. To make the output conform to the above
definitions, although with a lesser information content, a distinction is made as to
whether the graph is directed or not.

*/

if(directed) {
if(ComponentNumber == 1)
0s << "The graph is strongly connected.\n";
else

0s << "The graph is not or weakly connected.\n";

else
0s << "The graph has "
<< ComponentNumber
<< " component(s)." << std::endl;

0s << "The graph has "
if(Cycles == 0)

0s << "no "
0s << "cycles." << std::endl;

}

Display of vertices and edges

The output operator is used to display the vertices and edges of a graph. The output
format corresponds to the format assumed by the routines of the next section.

template<class VertexType, class EdgeType>
std::ostream& operator<<(std::ostream& o0s, Graph<VertexType,
EdgeType>& G) {
/I display of vertices with successors
for(size_t i = 0; i < G.size(); ++i) {
0s << Gli]lfirst << " <
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typename Graph<VertexType,EdgeType>::Successor::const_iterator
startN = Gli].second.begin(),

endN = GJi].second.end();
while(startN != endN) {
0s << G[(*startN).first].first << ' ' /J/ vertex
<< (*startN).second << ' ’; I edge value
++startN;
}
0s << ">\n";
}
return os;

11.1.3 Input and output tools

This section presents some tools that facilitate experimenting with algorithms in-
volving graphs. All auxiliary programs and sample data files are also available via
the Internet.

Reading data

Besides information on the connection of vertices, many graphs need only the la-
belling of vertices and in some cases the length of edges. A simple way of represent-
ing this information in a file is the following format:

vertex< successorl costl successor2 cost? ...

If they are not needed, the costs can be omitted.dharacter at the beginning
of a line starts a comment. Figuté.4corresponds to the simple fitggal.dat

» \)1
Figure 11.4: Directed graph. (Example taken froma by kind permission of Winer
publishers.)
# gral.dat
vl

v2 <vl v4 v5 >
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v3 <v2 v5 >

v4 <v2 >

# cycle, loop to itself:
v5 <v5 v4 >

For the vertices, the graph needs only an identifier of tgeg . The edge
parameters can be of a numeric type or, as in this example, oftype (see page
238. A program for reading and documenting a graph may then look as follows:

int main() {
/I no edge weighting, therefore tyjganpty :
br_stl::Graph<std::string, br_stl::Empty> V(true);
/[true  means directed

br_stl::ReadGraph(V, "gral.dat"); // file gral.datsee above
V.check(); 1l display properties
std::cout << V; 1 display of vertices with successors

The result of methodheck() is:

The graph is directed and has 5 vertices and 8 edges.
The graph is not connected or is weakly connected.
The graph has cycles.

The display of the vertices with successors corresponds to the format of the input
file. The functionReadGraph() is less interesting from an algorithmic point of
view; it can therefore be found in Sectiénl.2. A second example is an undirected
graph with integer edge weights:

Graph<string,int> G(false); 1 undirected

This graph is described by the following file, in which slight errors have been
inserted for demonstration purposes:

# gra2.dat

vO <vl 1 v5 3 >

#double edge v2

vli <v2 5v29v4 3v52vVv01l>
v2 <vl 5v56 2v4 2v3 1>

v3 <v2 1 v4 3>

vh <v5 1 vl 3 v22v3 3 >

vb <vl 2 v2 2v4 1l >

The result of the above program, including output of the corrected graph with
vertices and successors shown in Figlitesis as follows:

The graph is undirected and has 6 vertices and 10 edges.
The graph has 1 component(s).
The graph has cycles.
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vO<vl 1v53>
vi<vOl1v25v43v52>
v2<vl5v31v42v52>
v3<v21v43>
v4d<vl3v22v33v51>
vi<vl2v22v41v03>

Figure 11.5: Undirected graph with weighted edges. (Example frizm )

11.2 Dynamic priority queue

The STL provides the priority queue described in Sectidgh For some purposes,
the functions provided are not sufficient. For example, it is not possible specifically
to change the priority of an element stored in a priority queue. Nor is removing and
reinserting it with changed priority possible.

Exactly this property, however, is required in the algorithm for the topological
sorting of a graph (see Sectidi.3.9 and, furthermore, this property is advanta-
geous in an algorithm for finding the shortest path from one node to another. This
algorithm is described in Sectidri.3.1 It could also be solved with a conventional
STL priority queue, but only with a relatively higher number of push calls.

Since the required priority queue allows modification of stored elements without
losing the priority queue property, this type will be called a ‘dynamic priority queue.

It is intended as a special extension, so that it is not necessary to reproduce all the
methods of an STL priority queue, but only those needed in this application.

At first sight, it seems a good idea to exploit the existing STL implementation.
Two mechanisms are available:

e Inheritance
The container used in the STL priority queuepistected , so that it can be
accessed from within a derived class. However, the declaration would be very
complex: the elements would be of typair<key, Index> , with the priority
being defined by the keyey and the index representing a reference to the corre-
sponding node of the graph. At the declaration, not only the underlying container,
but also a comparison objeGreater or something similar must be specified,
since smaller keys are to signify a higher priority.

Furthermore, the size of the additional code to be written is of the order of a whole
new class, as experiments which are not documented here have shown.
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11.2.1

11.2.2

e Delegation
It is conceivable to invent a class thagesan STL priority queue by making it an
attribute of this class and forwarding method calls to it. This possibility is ruled
out because, owing to itfsotected  property, the container cannot be accessed,
but an access would be impossible to prevent.

Thus, it is more appropriate to write a special class. Even from the point of view
of total cost of design, coding and testing, it is more advantageous than copying and
complementing an existing implementation of a priority queue.

Data structure

The dynamic priority queue should allow an algorithm of the following kind:

1. Initialize the dynamic priority queuBPQwith a vectorV which consists of the
elements 0 .. — 1, andn = V.size() holds.

2. As long as thedPQis not empty:
e determine fronDPQthe element of V that has the smallest value,
e read the corresponding positierfrom DPQ
e modify one or more of the not yet read element¥/ of
e updateDPQaccordingly.

Elements ofv should be modified only via a dynamic priority queue method,
because the information on the element to be modified must be kept. All this should
also befast which excludes linear search processes or a reinitialization of the dy-
namic priority queue at each modification. To satisfy these requirements, the data
structure shown in Figur&l.6is chosen. In Figuré& 1.6 c is a vector of iterators
to the elements of the external vectarAfter initialization, c is converted into a
heap with the property thaf0] now points to the smallest element insideAfter
the heap conversion, the order of elements imo longer corresponds to the order
in V. To guarantee fast access in spite of this fact, an auxiliary andiges is
created with the necessary information, that is, elemaftthe array contains the
address of array, where the iterator to elemenbf vectorVv can be found (inverted
addressing). This allows fast changes without search processes:

/I modify element/[i] from within the dynamic priority queue:
*c[Indices[i]] = newValue;

At each modification of the heap the auxiliary array must be updated, which
takes place in constant time.

Class dynamic_priority _queue

The heap inside the dynamic priority queue is indirect because it consists of iterators
whose ordering obviously does not correspond to the iterators themselves, but to the
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Indices Heapc external vector

N B

dynamic_priority_queue

Figure 11.6: Internal data structure of the dynamic priority queue.

values pointed to by these iterators. The clesSreater allows the creation of
suitable function objects:

/I compares the associated values of passed iterators
template<class T>
struct IterGreater {

bool operator()( T x, T y) const { return *y < *x;}

h

It should be noted that only theoperator is needed for the template data type
and that the required relation is created by swapping the arguments. The class tem-
plate dynamic_priority_queue needs only the typkey_type of the elements
of the external vector, which represent the priorities.

/I include/dynpg.h
#ifndef DYNPQ_H
#define DYNPQ_H
#include<checkvec.h>
#include<algorithm>
#include<showseq.h>
namespace br_stl {

template <class key_type>
class dynamic_priority_queue {
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public:
/I public type definitions
typedef std::vector<key_type>::size_type size_type;
typedef std::vector<key_type>:.difference_type
index_type;

/I constructor
dynamic_priority _queue(std::vector<key_type>& v);

/I change a value at positiat
void changeKeyAt(index_type at, key type k);

/I index of the smallest element (= highest priority)
index_type topindex() const { return c.front()-first;}

/I value of the smallest element (= highest priority)
const key type& topKey() const { return *c.front(); }

void pop(); 1 remove smallest element from the heap

bool empty() const { return csize == 0;}
size_type size() const { return csize;}

private:
checkedVector<index_type> Indices; I auxiliary vector
typedef typename std::vector<key_type>::iterator
randomAccesslterator;

checkedVector<randomAccesslterator> c¢; // heap of iterators
randomAccesslterator first; 1 beginning of the external vector
IterGreater<randomAccesslterator> comp; // comparison object
index_type csize; I current heap size

/I heap update (see below)
void goUp(index_type);
void goDown(index_type);
h
}

The class definition is followed by the implementation together with explana-
tions about the way of functioning. In the initialization list, the vectosices
andc are created, among others. Subsequently, the addresses of all the elements of
the external vector are entered and a heap is generated. An entry of the auxiliary ar-
rayIndices is simply the difference between the address storediind the starting
address of the vecto.

template <class key_type>
dynamic_priority_queue<key_type>::
dynamic_priority _queue(vector<key type>& V)
. Indices(v.size()), c(v.size()), first(v.begin()),
csize(v.size()) {
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/I store iterators and generate heap
for(index_type i = 0O; i< csize; ++i)
cli] = v.begin() + i;

make_heap(c.begin(), c.end(), comp); /i STL

/I construct index array
for(index_type i = 0; i< csize; ++i)
Indices[c[i] - first] = i;

}

The methocchangeKeyAt() allows a value of the external vector at position
at to be changed without violating the heap property. This process is of complexity
O(log N) and therefore very fastV is the number of elements still present in the
heap. The main cost lies in the procedures for the reorganization of the heap which,
however, never require more steps thanV, the height of the heap.

The theory is that, if a modified element has become greater (= ‘heavier’), then
this element is allowed to sink down in the heap until it has reached its proper posi-
tion. Vice versa, a ‘lighter’ element should rise by a corresponding amount towards
the top.

template <class key_type>
void dynamic_priority_queue<key_type>::
changeKeyAt(index_type at, key_type k) {
index_type idx = Indices|at];

assert(idx < csize); [/ value still present in the queue?
if(*cfidx] '= k) { 1 in case of equality, do nothing
if(k > *c[idx]) {
*clidx] = k; 1 enter heavier value
goDown(idx); 1 reorganize heap
}
else {
*clidx] = k; 1 enter lighter value
goUp(idx); I reorganize heap
}
}

}

The method caljoUp(idx) causes an element to rise at positidx . Figure
11.7shows, from top to bottom, the effectdfangeKeyAt() andgoUp() , starting
with an arbitrary external vector whose ninth element is set to 0. The lighter element
atidx rises through gradual sinking of the heavier predecessors and entry at the
freed position.

template <class key_type>
void dynamic_priority_queue<key_type>::goUp(
index_type idx) {
index_type Predecessor = (idx-1)/2;



252 GRAPHS

randomAccesslterator temp = c[idx];

/* In the figure, the process is exemplified by swapping the values of predecessor and
successor. In the following program segment, however, in order to save unneces-
sary assignments, entry of the elemtarhp (0 in the figure) is postponed until
all the necessary exchange operations have been carried out.

*
while(Predecessor = idx
&& comp(c[Predecessor], temp)) {
clidx] = c[Predecessor];
Indices[c[idx]-first] = idXx;
idx = Predecessor;
Predecessor = (idx-1)/2;
}
clidx] = temp;

Indices|c[idx]-first] = idx;
}

The methodgoDown() functions correspondingly. The heavy elementdat
sinks down through gradual rising of the lighter successor and entry at the freed
position.

template <class key_type>
void dynamic_priority_queue<key_type>::goDown(
index_type idx) {
index_type Successor = (idx+1)*2-1;
if(Successor < csize-1
&& comp(c[Successor], c[Successor+1]))
++Successor;
randomAccesslterator temp = cJidx];

while(Successor < csize && comp(temp, c[Successor])) {
clidx] = c[Successor];
Indices[c[idx]-first] = idx;
idx = Successor;
Successor = (idx+1)*2-1;

if(Successor < csize-1
&& comp(c[Successor], c[Successor+1]))
++Successor;
}
clidx] = temp;
Indices|c[idx]-first] = idx;

}

The methogop() removes the topmost element from the heap. This is done by
moving the last element to the top and blocking the freed position witfive
Subsequently, the element sinks down to its proper position.
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Figure 11.7: Effect othangeKeyAt() andgoUp() .
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template <class key_type>

void dynamic_priority_queue<key_type>::pop() {
/I overwrite iterator at the top with the address of the last element
c[0] = c[--csize];

/I enter the new address 0 at the position belonging
/I to this element in the auxiliary array
Indices|[c[0]-first] = O;

/I let the element at the top sink to the correct position corresponding to its weight
goDown(0);

}
#endif

Example
A program fragment shows the application:

/I excerpt fromk11/dynpg/maindpg.cpp
br_stl::checkedVector<double> V(8);

/I ... assign here values to the elemevi$
br_stl::dynamic_priority_queue<double> DPQ(V);

/I change valu&/[3] ; correct insertion int@®PQis carried out automatically
DPQ.changeKeyAt(3, 1.162);

/I outputting and emptying by order of priority
while('DPQ.empty()) {
std::cout << "index: " << DPQ.topIndex()
<< " value: " << DPQ.topKey() << std::endl;

DPQ.pop();

11.3 Graph algorithms

There are vast numbers of algorithms for graphs. Here, only some of these are pre-
sented to show how such algorithms can be implemented using the STL and its
techniques with the extensions of the previous sections.

Many problems involving graphs, such as finding the shortest path between two
points or determining an optimal travelling route, involve specifying locations. For
such problems, a vertex type suggests itself which contains the location’s coordinates
and a denomination. A suitable class for thi®isce :

/I include/place.h
#ifndef PLACE_H
#define PLACE_H
#include<cmath>
#include<string>
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namespace br_stl {

class Place {
public:
Place() {};

Place(long int ax, long int ay,
std::string& N = std::string("™))
: x(ax), y(ay), Name(N) {

}

const std::string& readName() const { return Name;}
unsigned long int X() const { return x;}
unsigned long int Y() const { return y;}

bool operator==(const Place& P) const {
return x == P.X && y == P.y;
}

/I for alphabetical ordering
bool operator<(const Place& P) const {
return Name < P.Name;

}

private:
long int x, v; 1 coordinates
std::string Name; 1 identifier

2
Sometimes additional information, such as the number of inhabitants of a place,
is required and can easily be added. The distance between two places can easily be
calculated. The corresponding functibistSquare()  is formulated as a separate
function, because often only the result of a comparison of distances is of interest. To
carry out the comparison, the squares of the distances are sufficient, and calculation
of the square roadgrt()  can be omitted.

inline unsigned long int DistSquare(const Place& p,
const Place& q) {
long int dx = p.X()-g.X();
long int dy = p.Y()-9.Y();
/I (arithmetic overflow with large numbersiitchecked)
return dx*dx + dy*dy;

}

inline double Distance(const Place& p, const Place& q) {
return std::sqrt(double(DistSquare(p,q)));

}

The output operator displays the name of the place and allows a simpler notation
than the detour vieeadName() .
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inline std::ostream& operator<<(std::ostream& o0s,
const Place& S) {
return (os << S.readName());
}
} /I namespace br_stl
#endif

11.3.1 Shortest paths

Here, the problem is to find the shortest path between two points of a graph. Probably
the best known algorithm for this purpose is Dijkstra’s algorithm. It uses the dynamic
priority queue of Sectioril.2 Figure 11.8 shows an undirected graph with 100
places, in which the shortest path between point 0 and point 63 is highlighted.

Figure 11.8: Graph with shortest path between two points.

The graph in Figurel1.8 was created with a number of small auxiliary pro-
grams. The functionreate_vertex_set() (SectionA.1.3) can be used to gener-
ate a number of vertices with random coordinates within a given frame. The function
connectNeighbors() (SectionA.1.4) connects neighboring vertices of an undi-
rected graph, ancreateTeXfile() (SectionA.1.5) takes the graph and generates
a file to be read into theé'IpX typesetting program used to typeset this book.

How should theDijkstra() algorithm be used? In the following example, a

graphG with random coordinates is constructed, but any other graph would do as
well:

/I excerpt fromk11/dijkstra/mainplace.cpp
#include<gra_algo.h> 1 containsDijkstra()
#include<gra_util.h> i auxiliary functions from Appendix A

using namespace std;

int main() {
size_t Count = 100;
br_stl::Graph<br_stl::Place,float> G(false); // undirected
br_stl::create_vertex_set(G, Count, 12800, 9000); // range

br_stl::connectNeighbors(G);
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/* TheDijkstra() function must be passed the graph, a vector of distances, and
a vector of the predecessors, which are modified by the algorithm. The distance
type must match the edge parameter type of the graph.

*/

vector<float> Dist;
vector<int> Pred;

int start = 0; 1 starting point 0

br_stl::Dijkstra(G, Dist, Pred, start);

/* The last argument is the starting point which can be any vertex between no.
0 and no. G.size()-1 ). After the call, the distance vector contains the
length of the shortest paths from each point to the starting pBiist[k]
is the length of the shortest possible path from vertex ido vertex no. O.
Dist[StartingPoint] is 0 by definition.

*

/I output

cout << "shortest path to "

<< Glstart].first << "\n";

cout << "predecessor of: is:
"distance to [indices in ()]:\\n";

for(size_t i = 0; i < Pred.size(); ++i) {
cout << Gi].first
<< 1(! << I << Il) ",

if(Pred[i] < 0)

cout << "-" 1 no predecessor of starting point
else

cout << G[Pred][i]].first;

cout << '(" << Pred[i] << )
cout.width(9);
cout << Dist[i] << endl;

}
}
The predecessor vector contains the indices of the predecessors on the path to-
wards the starting poinPred[StartingPoint] is undefined. If the starting vertex

is 0, the predecessor and distance vectors of the graph in Higlbave the values
shown in Tablel1.2 It corresponds to the output of the above program, except that
the table shows only theertex numberand not thevertex names

The shortest path from vertex to vertexvg is 6 units long and leads through the
verticesvy (=Pred[3] ) andwvs (=Pred[2] ). The predecessor of 5 is 0. With this,
the target is reached. There can be several equally short paths. The corresponding
output of the program is:
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Figure 11.9: A shortest path.

i Pred]i] Dist[i]
0 undefined 0
1 0 1
2 0 3
3 2 5
4 1 4
5 3 6

Table 11.2: Example of predecessor and distance vectors.

shortest path to v0:

Predecessor of: is: Distance to  [indices in ()]:
vO(0) —(-1) 0
vi(l) v0(0) 1
v5(2) v0(0) 3
v2(3) v5(2) 5
v4(4) vi(1l) 4
v3(5) v2(3) 6
How does the algorithm find the shortest path between two points? This algo-
rithm is extensively described in several textbooks, €aj! ) There-

fore only a brief outline is given. A preliminary hint: below, the distance vector is
to be initialized with the valueo, which is ‘approached’ by the maximum value
possible for the data type in question:

numeric_limits<aScalarType>::max() // maximum value

aScalarType is one of the basic data typis , long , double , and so on. The
classnumeric_limits is declared in the headelimits>

The inclusion of the include files is followed by the definition of thgstra()
function which is passed the gra@h, the two vectors of distances and predecessors,
and the starting point of the search.

/I include/gra_algo.h

#ifndef GRAPH_ALGORITHMS_H
#define GRAPH_ALGORITHMS_H
#include<dynpg.h>
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#include<graph.h>
#include<limits>
#include<iostream>

namespace br_stl {

template<class GraphType, class EdgeType>
void Dijkstra(GraphType& Gr, std::vector<EdgeType>& Dist,
std::vector<int>& Pred, int Start) {

/* The algorithm proceeds in such a way that the distances are estimated and the
estimates gradually improved. The distance to the starting point is known (0). For
all other vertices, the worst possible estimate is entered.

*/

Dist = std::vector<EdgeType>(Gr.size(),
std::numeric_limits<EdgeType>::max());
/I as good aso
Dist[Start] = (EdgeType)0;

/* The predecessor vector too is initialized with ‘impossible’ values (—1). Subse-
quently, a dynamic priority queue is defined and initialized with the distance vec-
tor:

*/

Pred = std::vector<int>(Gr.size(), -1);

dynamic_priority_queue<EdgeType> Q(Dist);

/* In the next step, all vertices are extracted one by one from the priority queue,
and precisely in the order of the estimated distance towards the starting vertex.
Obviously, the starting vertex is dealt with first. No vertex is looked at twice.

*/
int u; Il vertex with minimum
while(!Q.empty()) {
u = Q.toplndex(); 1l extract vertex with minimum
Q.pop();

/* Now, the distance estimates for all neighboring vertices afe updated. If
the previous estimate of the distance between the current neighlboarad
the starting vertexist[Neighbor] ) is worse than the distance between
vertexu and the starting verteXD(st[u] ) plus the distance betweenand
the neighboring vertexd{st ), the estimate is improved.

This process is called relaxation. In this case, the path from the starting vertex
to the neighbor cannot be longer th@ist[u] + dist) . In this caseu
would have to be regarded as the predecessor of the neighbor.

*/

/I improve estimates for all neighbors of
typename GraphType::Successor::const_iterator
| = Gr[u].second.begin();
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}
}

while(l = Gr[u].second.end()) {

int Neighbor = (*I).first;
EdgeType dist = (*I).second;

/I relaxation

if(Dist[Neighbor] > Dist[u] + dist) {
/I improve estimate
Q.changeKeyAt(Neighbor, Dist[u] + dist);
/l'u is the predecessor of the neighbor
Pred[Neighbor] = u;

}

++;

/I ... further graph algorithms (see later)
} /I namespace br_stl

#endif

The loop cycles through all vertices. If the number of vertices is denotddby
and the number of edges by, the complexity of the algorithm can be estimated

as follows on the basis of the individual procedures:

1. Ny removals from the queue.

2. The removal fop() ) is of complexityO (log Nv).

3. Relaxation is carried out corresponding to the number of edges of a vertex. Since
each vertex is looked at only once, its edges too are looked at only once. There-

fore, a total of max/Ng edges are relaxed.

4. The relaxation of an edge is of complexify(log Nv). The cost derives from

reorganization of the heap in the methtgingeKeyAt()

The removals ‘cost’ a total o®(Ny log Ny ), and the cost of all relaxations
totals O(Ng log Nv). Thus, the complexity of the whole algorithm 6((Nv +
it is demonstrated that the path found really
is the shortest one. Obviously, there can be several equally short paths in a graph.
Which of these is chosen depends on the arrangement of vertices and edges.

NE) log Nv) In

11.3.2 Topological sorting of a graph

Topological sorting is a linear ordering of all vertices of a graph in such a way that
in the ordering each successive vertex appafiesits predecessor.

One example is the references in an encyclopedia, in which a term is explained
with the aid of other terms. A topological order of the terms would be an order in

which references are made only to already defined terms.
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A Gantt chart, in which it is determined which activity must be terminated before
another one can be started, also contains topological sorting. Thus, when building a
house, painters and decorators can start only when electricians and joiners have fin-
ished. These, in turn, can start only after the builders have erected the walls. A graph
that describes such dependencies must not contain cycles. In other words, it cannot
be that the builders can only erect the walls after painters and electricians have fin-
ished their work and that these, in turn, wait for the builders.

Some things can be done in arbitrary order, for example wall painting and in-
stalling the central heating boiler. Thus, different topological sortings of a graph are
possible. A directed acyclic graph is often abbreviatedagor DAG. Figure11.10
shows a DAG which is not yet sorted topologically. The graph is defined by the
following file with the structure known from padg#!s

topo.dat
lef>
cei>
fgij>
cgn>
h >

im>
f >

ANAANAMNRAMNNA

X T oDKQ "o Q0 T H
ANNA
5 — =
v oV
\Y,

|
m«<j>
n

In the figure, activityy must be carried out before activigy Activities i, [, andn
are final activities; they have no successors and therefore stand at the end of the topo-
logical sorting shown in Figuré1.11 The dashed lines are redundant because the
vertices can be reached via other edges. The essential difference is that all direction
arrows pointto the right Vertices of the graph that have no topological precedence
over each other are drawn more or less above each other. All vertices that have no
predecessor are on the extreme left.

The algorithms in the quoted literature mostly proceed by way of a depth first
search( ) or by complicated list structures which are constructed
for the analysis\( ). In contrast to these, a method will be described
which successively reads those vertices from a dynamic priority queue that have
no predecessors, and then removes these vertices by updating the predecessor num-
bers of the other vertices. This method has the advantage of being very compact and
very fast. Firstly, let us look at the program that calls the topological sorting:

/I k1l/toposort/main.cpptopological sorting
#include<gr_input.h>
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Figure 11.11: Topologically sorted DAG.

#include<gra_algo.h> // containgopoSort() , see below
using namespace std;

int main() {

br_stl::Graph<string, br_stl::Empty> G(true); // directed
br_stl::ReadGraph(G, "topo.dat");

[* After sorting, the vectoOrdering passed as argument contains the indices of
the graph’s vertices.

*/

vector<int> Ordering;

if(br_stl::topoSort(G, Ordering)) { I sort
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for(size_t i = 0; i < G.size(); ++i)
cout << G[Ordering[i]].first << * ’;
cout << endl;

}

else cout << "Error in the graph\n";
}
The output of the program corresponds to the representation in Figuté

dbacegfimjkhnl

The algorithm proper follows. The function returfatse if the graph contains
one or more cycles. In such a case, the result is meaningless.

/I File include/gra_algo.Hcontinued from pag&60)

template<class GraphType>

bool topoSort( GraphType& G, std::vector<int>& Result) {
assert(G.isDirected()); 1l let's play it safel
int ResCounter = 0;
Result = std::vector<int>(G.size(), -1);

/* The vectorResult takes the indices of the correspondingly distributed vertices.
The counteResCounter s the position inResult where the next entry be-
longs.

*/

checkedVector<int> PredecessorCount(G.size(), 0);

int VerticesWithoutSuccessor = 0;

/* For each vertex, the vectdPredecessorCount  counts how many prede-
cessors it has. There are vertices without successors, whose number is kept in

VerticesWithoutSuccessor . Furthermore, the algorithm remains stable
if the precondition that a graph must not have cycles is violated. The variable
VerticesWithoutSuccessor is used to recognize this situation (see below).

*
for(size_t iv = 0; iv < G.size(); ++iv) {
if(G[iv].second.size() > 0) { // is predecessor

typename GraphType::Successor::const_iterator | =
GJiv].second.begin();

while(l = GJiv].second.end())
/I update number of predecessors
++PredecessorCount[(*I++).first];

}

else { /I Vertexis no predecessor, that is, without successor

/I an excessively high number of predecessors is used
/I for later recognition
PredecessorCount[iv] =  G.size(); // too many!
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++VerticesWithoutSuccessor;

}

/* The dynamic priority queue is initialized with the vector of numbers of predeces-
sors. At the beginning of the queue we find those vertices that have no predecessors
and therefore are to be processed next. Only the vertices which are predecessors
themselves, that is, that have successors, are processed. The subsequent loop is
terminated when the queue contains only successor vertices which themselves are
not predecessors. Their number of predecessors can never be 0 because earlier
they were initialized with too high a value.

*/

dynamic_priority _queue<int> Q(PredecessorCount);

/I process all predecessors
while(Q.topKey() == 0) {
/I determine vertex with predecessor number 0
int oV = Q.toplndex();
Q.pop();

Result[ResCounter++] = oV;

/* To ensure that this vertex without predeces®dfss no longer considered in
the next cycle, the number of predecessors of all its successors is decreased
by 1.

*/

typename GraphType::Successor::const_iterator

| = G[oV].second.begin();
while(I '= G[oV].second.end()) {
/I decrease number of predecessors with
/I changeKeyAt() . Do not change directly!
int V = (*1).first;
Q.changeKeyAt(V, PredecessorCount[V] -1);
++I;

/* Now, all vertices without successors are entered. As a countercheck, the variable
VerticesWithoutSuccessor is decreased. If the queue contains too many
vertices, an error message is displayed.

*/

while(!Q.empty()) {

ResultfResCounter++] = Q.toplndex();
Q.pop();

--VerticesWithoutSuccessor;

}

if(VerticesWithoutSuccessor < 0)
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std::cerr << "Error: graph contains a cyclel\n";
return VerticesWithoutSuccessor == 0;

}

The error occurs when the graph contains at least one cycle, since in the cy-
cle itself there can never be a vertex without a predecessor. In that case, more
vertices are caught in the queue than there should be according to the number
VerticesWithoutSuccessor counted at the beginning.

Complexity

For an estimate of the complexity, the following activities are relevant, whire
is the number of vertices andli the number of edges. An auxiliary measure-
Ng /Ny is the average number of successors and predecessors per vertex:

1. Initialization of the vector with numbers of predecesso¥s: + Ng.
2. Initialization of the dynamic priority queuéysy,.

3. while loops: in all loops, each vertex is treated exactly ondg ) and each
edge (successor vertex) depending on the number of predecessors and successors
(nNg). Each ‘treatment’ means removal from the qudug (Vy) or modification
of the queue witlthangeKeyAt()  (againlog Nv).

The dominating part i&Vy log Ny + nNg log Nv. If the number of vertices and
edges is approximately the same, the cost to be expect®@dNs, log Ny ). The
upper limit for the number of edges, howeverNs (Ny — 1)/2 (every vertex is
connected with every other vertex), so that the complexiy(ia/2 log Nv).

Exercise

11.1 What happens if you run the program on paf with a file topo.datin
which the lingj < | k > issubstituted with < f | k > ?






Appendix

A.1l Auxiliary programs
A.1.1 Reading the thesaurus file roget.dat

The functiorreadRoget()  reads the fileoget.dataccording to the given format, in
order to build a data structure for a thesaurus (see Segtn

void readRoget(std::vector<std::string>& Words,
std::vector<std::list<int> >& lists) {
std::ifstream Source("roget.dat");
assert(Source); 1 let's play it safe!

const int maxbuf = 200;
char buf[maxbuf];

char c;

size t i

while(Source.get(c)) {
if(c == ") 1 skip line
Source.ignore(1000,\n’");
else
if(std::isdigit(c)) {
Source.putback(c);
Source >> i; i current no.
Source.getline(buf, maxbuf, ’); 1 word
Words[--i] = buf;

/I read line numbers if present,
/I ignoring backslash:
while(Source.peek() = "\n’) {
int j;
Source >> |;
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lists[i].push_front(--j);

if(Source.peek() == '\V)
Source.ignore(1000,\n’);

A.1l.2 Reading a graph file

TheReadGraph() function is used to read a file for constructing a graph according
to the format described on pagé5. The graph has only an identifier of typiing

for the vertices. The edge parameters can be of any numeric type or dfrye

(see page39).

#ifndef GR_INPUT_H
#define GR_INPUT_H
#include<string>
#include<cctype>
#include<graph.h>
#include<fstream>
#include<iostream>
namespace br_stl {

template<class EdgeParamType>
void ReadGraph(Graph<std::string,EdgeParamType>& G,
const char *Filename) {

std::ifstream Source;

Source.open(Filename);

if (ISource) { /I error check

std::cerr << "Cannot open "
<< Filename << "N\n";

exit(-1);
}
while(Source) {
char c;

std::string vertex, VertexSuccessor;
Source.get(c);
ifisalnum(c)) {
Source.putback(c);
Source >> vertex;
G.insert(vertex);
/I collect successor now, if present
bool SuccessorExists = false;
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Source >> c;
if(c == <)

SuccessorExists = true;
else

Source.putback(c);

while(SuccessorExists) {
Source >> VertexSuccessor;
if(lisalnum(VertexSuccessor[0]))
break; // illegal character

EdgeParamType Par;
Source >> Par; 1 read parameters
G.insert(vertex, VertexSuccessor, Par);
}
}

else /I skipline
while(Source && c¢ != '\n’) Source.get(c);

}

} /I namespace br_stl
#endif

A.1.3 Creation of vertices with random coordinates

The functions of the following sections can be found in thedil@ util.h. The pre-
lims are:

#ifndef GRAPH_UTILITIES_H
#define GRAPH_UTILITIES_H
#include<place.h>
#include<graph.h>
#include<fstream>
#include<myrandom.h>
#include<string>
#include<iostream>

namespace br_stl {

During automatic creation of an undirected graph, a name must be generated
for each vertex. The following auxiliary function converts the current number into a
string object which is entered as identifier.

/I auxiliary function for generating strings out of numbers
std::string i2string(unsigned int i) {
if(i==0) return std::string("0");
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char buf[] = "0000000000000000";

char *pos = buf + sizeof(buf) -1; // point to end
do
*-pos = i % 10 + 0}
while(i /=10);
return std::string(pos);
}
The functioncreate_vertex_set() creates a number of vertices with ran-

dom coordinates between 0 antxX or maxY in a graphG according to its size
(G.size() ).

template<class EdgeType>
void create_vertex_set(Graph<Place, EdgeType>& G,
int count, int maxX, int maxY) {
Random xRandom(maxX),
yRandom(maxY);

/I create vertices with random coordinates
int i = -1;
while(++i < count)
G.insert(Place(xRandom(), yRandom(),i2string(i)));

A.1.4 Connecting neighboring vertices

This function connects neighboring vertices. Two plac¢esd ; are considered
neighbors if there is no place located nearer to the mid-point between these two
places than the two places themselves.

This definition of neighborhood is certainly arbitrary. It has the advantage that
no place remains unconnected. Predefining a maximum distance between two places
as a neighborhood criterion has the disadvantage that a point located slightly out of
the way might not be connected.

The above definition resembles the definition of neighborhood used in graph

theory for triangulation of a graph (Delaunay triangulation, see ).
The Delaunay triangulation postulates that there exists an interval on the mid-
perpendicular between two places starting from which any point is nearer to these
two places than to any other place. Usually, the mid-point of the two places lies
inside this interval, but this is not mandatory.

We will not discuss the Delaunay triangulation algorithm because it is consid-
erably more complicated than the algorithm presented here. Furthermore, we need
only to connect neighboring places, not to subdivide the graph into triangles.

template<class EdgeType>
void connectNeighbors(Graph<Place, EdgeType>& G) {
for(size_t i = 0; i < G.size(); ++i) {
Place iPlace = GIi].first;
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for(iint j = i+1; j < G.size(); ++j) {
Place jPlace = GIj].first;

Place MidPoint((iPlace.X()+jPlace.X())/2,
(iPlace.Y()+jPlace.Y())/2);

I* The following loop is not run time optimized. A possible optimization
could be to sort the places by theircoordinates so that only a small
relevant range must be searched. The relevant range results from the fact
that the places to be compared must lie inside a circle around the mid-
point whose diameter is equal to the distance between the placel.

*/

size_ t k = 0;
long int e2 = DistSquare(iPlace, MidPoint);

while(k < G.size()) { 1l not run time optimized
ifk 1= ] && k = i &&
DistSquare(G[K].first, MidPoint) < e2)
break;
++k;
}
if(k == G.size()) { // no nearer place found

EdgeType dist = Distance(iPlace, jPlace);
G.connectVertices(i, j, dist);

A.1.5 Creating a LATEX file

Creation of a figure of a directed graph aggX file is carried out by the following
function. The image size is defined kylax andyMax. The scaling factor increases
or decreases the scaling of the image.

/I Only for undirected graphs!
template<class EdgeType>
void createTeXfile(const char * Filename,
Graph<Place, EdgeType>& G,
double ScalingFactor,
int xMax, int yMax) {
assert(!G.isDirected());
std::ofstream Output(Filename);

if('Output) {
std::cerr << Filename << " cannot be opened/\n";
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exit(1);
}

Output << "%% This is a generated file'\n"
<< "\Wnitlength 1.00mm\n"
<< "\\begin{picture}("

<< xXMax <<
<< yMax << ")\n"

for(size_t iv = 0; iv < G.size(); ++iv) {
/I point
Output << "\put("
<< GJiv].first.X()*ScalingFactor

N

<< )
<< GJiv]first.Y()*ScalingFactor
<< "{\circle*{1.0}}\n";

N

/I name of node

Output << "\put("
<< (1.0 + @Gjiv].first.X()*ScalingFactor)
<< )
<< GJiv]first.Y()*ScalingFactor

<< "Y{\\makebox(0,0)[Ib]{{\\tiny "
<< Gliv]-first 1 name
<< "BAn";

[* All edges are drawn. To prevent them from appearing twice in the undirected
graph, they are drawn only in the direction of the greater index.
*/

typename
Graph<Place,EdgeType>::Successor::const_iterator
I = GJiv].second.begin();

while(l = GJiv].second.end()) {

size_t n = (*).first;

if(n > iv) { I otherwise ignore
double x1,x2,y1,y2,dx,dy;
x1 = GJiv].first.X()*ScalingFactor;
yl = Gliv].first.Y()*ScalingFactor;
x2 = G[n].first.X()*ScalingFactor;
y2 = G[n]first.Y()*ScalingFactor;
dx = x2-x1,
dy = y2-yl;

double dist = std::sqrt(dx*dx+dy*dy);
int wdh = int(5*dist);

dx = dx/wdh;

dy = dy/wdh;
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Output << "\multiput("

<< X1 << "<yl << ("
<< dx << """ << dy << "){"
<< wdh
<< "K\\circle*{0.1}}\n";

}

++1;

}
}
Output << "\\end{picture}\n";

}
#endif /I  GraphUtilities

In the sample programs there is also a similar functieateMPfile() which
generates output for MetaPost which then can be converted to PostScript. The print
quality is much better.

A.2 Sources and comments

The Silicon Graphics implementation of the STL can be obtained via

http://www.sgi.com/Technology/STL

This implementation is not only part of SGI's compiler, but also used in GNU
C++. Commercial variations are supplied by several vendors. Besides the source
code, the above Internet address also contains the corresponding documentation and
other interesting links. The documentation can be freely used, provided that the
copyright notice (seattp://www.sgi.com/Technology/STL ) is included. The
examples from this book can be found under

http://www.ubreymann.de/stlbe.html and
http://www.informatik.hs-bremen.de/~brey/stlbe.html

The thesaurus filoget.datand other interesting files and programs dealt with in
are contained in th8tanford graphBasevhose files can be obtained
via FTP fromftp.labrea.stanford.edu . Under this address, look for directory
sgb.

A.3 Solutions to selected exercises

This section contains a selection of solutions which should be considered as sugges-
tions. Often, several solutions exist, even though only one (or none) may be indi-
cated.

Chapter 1

1.1 For clearness, the singly-linked list clasist  is shown in its entiretyr is the
placeholder for the data type of a list element.
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tip

Recommendation: After having learned to build clats , put it aside and use
only the standard cladist . It has the same (and more) functions, and it is stan-
dardized.

Supplements telist  (compared to pagé.4) are:
erase()

clear()

empty()

size()

iterator::operator==()

iterator::operator!=()

copy constructor, destructor, assignment operator.

Il kl1/ad/slist.h list template for singly-linked lists

/I T is a placeholder for the data type of a list element.
#ifndef SIMPLELIST_H

#define SIMPLELIST H SIMPLELIST_H

#include<cassert>
#include<iterator>
namespace br_stl {

template<class T>
class slist {
public:
/* Some types of the class get public names. Then it is possible to use them outside

the class without knowing the implementation.
*

typedef T value_type;

typedef ptrdiff_t difference_type;
typedef T* pointer;

typedef T& reference;

/I see also text

slist() : firstElement(0), Count(0) {}
~slist() { clear();}

slist(const slist& sl)
. firstElement(0), Count(0)X{
if(Isl.empty()) {

iterator | = sl.begin();

push_front(*I++);

ListElement *last = firstElement;

while(l = sl.end()) {

/I insert elements at the end to preserve the ordering
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last->Next = new ListElement(*I++, 0);
last = last->Next;
++Count;

}
}
}

slist& operator=(const slist& sl) {
slist temp(sl);
/I swap mgmt.info. swap() see chapter 5
std::swap(temp.firstElement, firstElement);
std::swap(temp.Count, Count);

return *this;

}

bool empty() const { return Count == 0;}
size_t size() const { return Count;}

[* The implementation gbush_front() creates a new list element and inserts it at
the beginning of the list:
*/
void push_front(const T& Datum) { // insert at beginning
firstElement = new ListElement(Datum, firstElement);
++Count;

}

private:
struct ListElement {
T Data;
ListElement *Next;
ListElement(const T& Datum, ListElement* p)
: Data(Datum), Next(p) {}
h

ListElement *firstElement;
size_t Count;

/* The list consists of list elements whose type is defined inside the list class as a
nested public class (strudtijstElement . In a structure, direct access to internal
data is possible, but this is no problem here because the data is located in the
private section of the slist class. Each list element carries the pertinent data, for
example a number, together with a pointer to the next list element. firstElement is
the pointer to the first list element. The class slist provides an iterator type iterator
which is located in the public section since it is to be publicly accessible. An
iterator object stores the current container position in the current attribute. The
methods satisfy the requirements formulated for iterators.

*/

public:
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class iterator {
friend class slist;
public:
typedef std::forward_iterator_tag iterator_category;
typedef T value_type;
typedef T* pointer;
typedef T& reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;

iterator(ListElement* Init = 0)
: current(Init){}

T& operator() { I dereferencing
return current->Data;

}

const T& operator*() const { // dereferencing
return current->Data;

}

iterator& operator++() { I prefix
if(current) // not yet arrived at the end?

current = current->Next;

return *this;

}

iterator operator++(int) {  // postfix
iterator temp = *this;
++*this;
return temp;

}

bool operator==(const iterator& x) const {
return current == x.current;

}

bool operator!=(const iterator& x) const {
return current != x.current;

}

private:
ListElement* current; // pointer to current element
Y. Il iterator

/* Some methods of thelist  class use thiéerator class:
*/
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iterator begin() const { return iterator(firstElement);}
iterator end() const { return iterator();}

iterator erase(iterator position) {

if('firstElement) return end(); // empty list
iterator Successor = position;
++Successor;

/I look for predecessor
ListElement *toBeDeleted = position.current,
*Predecessor = firstElement;

if(toBeDeleted != firstElement) {
while(Predecessor->Next != toBeDeleted)
Predecessor = Predecessor->Next;
Predecessor->Next = toBeDeleted->Next;
}
else //  delete at firstElement
firstElement = toBeDeleted->Next;
delete toBeDeleted;
--Count;
return Successor;

void clear() {
while(begin() '= end())
erase(begin());

h

template<class Iterator>

int operator-(lterator second, lIterator first) {
/I similar to std::distance(first, second);
int count = 0;

I* The difference between the iterators is determined by incremefitsig  until
the second iterator is reached. Thus, the condition isfitsit lies not afterthe
second iterator. In other wordsecond must be reachable Hiyst by means of
the++ operator.

*

while(first = second
&& first = lterator()) {

++first;

++count;
}

/I In case of inequality, second is not reachable by first
assert(first == second);
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return count;

}

} /I namespace br_stl
#endif // SIMPLELIST_H

Chapter 4

4.1 The best way is to break down the expression step by step, giving temporary
objects auxiliary names. The k&yshall be of typeKey. First, a pairP is created:

P = make_pair(k, T();
The expression

(*((m.insert(make_pair(k, T()))).first)).second
thus becomes

(*((m.insert(P)).first)).second

Insertion of this pair is carried out only if it does not yet exist. In any case,
insert() returns a paiPIB of type pair<iterator, bool> , SO that the expres-
sion is further simplified to:

(*((P1B).first)).second

The first elementfifst ) is an iterator pointing to the existing, maybe just in-
serted, element of typealue_type , that is,pair<Key,T> . This iterator will be
calledi :

(*I).second

Dereferencing this iterator witbperator*() yields a reference to an object of
typepair<Key,T> , of which the secondsécond ) element of typd is now taken.

4.2 No.value_type isapair , and the constructor forgair is called.

Chapter 5

5.1 template <class Inputlteratorl, class Inputlterator2>
inline bool equal(Inputlteratorl firstl,
Inputlteratorl last1,
Inputlterator2 first2) {
return mismatch(firstl, lastl, first2).first == last1;
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5.2 template <class Inputlteratorl, class Inputlterator2,
class BinaryPredicate>
inline bool equal(Inputlteratorl firstl,
Inputlteratorl last1,
Inputlterator2 first2,
BinaryPredicate binary_pred) {
return mismatch(firstl, lastl, first2,
binary_pred).first == lastl;
}

5.3 template <class Forwardlterator, class Distance>
void rotate_steps(Forwardlterator first,
Forwardlterator last,
Distance steps)  {// > 0 =right, < 0 = left
steps %= (last - first);
if(steps > 0)
steps = last - first - steps;
else
steps = -steps;
rotate(first, first + steps, last);

}

5.4 cout << "\n Stability (relative order) violated "
“for the following value pairs:\n";
vector<double>::iterator stable_lterl = stable.begin();
while(stable_Iterl != stable.end()) {
/I search for counterpart instable]]

vector<double>::iterator unstable_lterl =
find(unstable.begin(), unstable.end(),
*stable_lterl);

if(lunstable_lterl != unstable.end()) {
/I check all elements following aftestable_lterl whether they are
/I also found inunstable[] afterthe positionunstable_Iterl
/I (if not: unstable sorting)
vector<double>::iterator unstable_lter2,
stable_lter2 = stable_lter1;

++stable_lter2;
++unstable_lterl;

while(stable_Iter2 != stable.end()) {
unstable_lter2 =
find(unstable_lterl, unstable.end(),
*stable_lter2);
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if(lunstable_lter2 == unstable.end()) //
cout << (*stable_lIterl)
<< 7
<< (*stable_lIter2)
<< endl;
++stable_lter2;

}
}

++stable_lterl;

not found?
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A.4 Overview of the sample files

The internet sources (see sectiR on page273) contain pointers to downloadable

files with all the examples in this book. The further directory structure is oriented
by the book’s chapters, with the names corresponding to the section numbers. Thus,
the directorykl/a3.4 belongs to Chapter 1, Section 3.4. Self-explanatory names,
such ak3/list , are also often used. The include directory contains the template
classes of this book together with auxiliary files for adaptation to the conditions of
the compiler used. On the following pages, the sample files are listed together with
the page reference for this book.

A.4.1 Files in the include directory

For simplicity, the files needed in many of the examples and therefore in many di-
rectories have been transferred into the include directory. This directory should be
specified as the first standard include directory.

File Description Page
include/checkvec.h checked vector 196
include/dynpg.h dynamic priority queue 247
include/graph.h graphs 238
include/gra_algo.h algorithms for graphs 256
include/gra_util.h auxiliary functions for graphs 269
include/gr_input.h reading of graph files 268
include/hashfun.h hash address calculation 180
include/hmap.h hash map 172
include/hset.h hash set 181
include/iota.h iota-class 101
include/place.h class for places 254
include/setalgo.h set algorithms 161
include/showseq.h display of sequences 56
include/sparmat.h sparse matrix 215
include/myrandom.h class for random numbers 112

Table A.1: Additions to the include directory.

A.4.2 Files for the introductory examples
See TableA.2.

A.4.3 Files for the standard algorithms

The standard algorithms are described in Chapténerefore no table is given. If
needed, they can be found in the Contents. All files are located in the diré&tory
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File Description Page
kl/a3.4/mainc.cpp examples for interplay 6
k1/a3.4/mainstl.cpp of STL elements 6
kl/a3.4/maintl.cpp 7
kl/a3.4/maint2.cpp 8
k1/ad/slist.h singly-linked list 10
k1/a4/mainstl2.cpp example for slist 13
k1/a6/compare.cpp example for comparison objects 23
k2/identify/identif.h class for identifiers 41
k2/identify/identif.cpp implementation of the above 41
k2/identify/main.cpp application for the above 43
k2/istring.cpp istream iterator application 37
k3/iterator/binsert.cpp example forback_insert_iterator 65
k3/iterator/binserter.cpp example fotback_inserter()
k3/iterator/finsert.cpp example for 66
front_insert_iterator
k3/iterator/finserter.cpp example forfront_inserter()
k3/iterator/insert.cpp example forinsert_iterator 67
k3/iterator/inserter.cpp example folinserter()
k3/iterator/iappl.cpp selection of implementation dependent 59
on iterator type
k3/iterator/ityp.cpp determination of iterator type 58
k3/iterator/valdist.cpp determination of value and distance 61
types
k3/list/identif.h see above: k2/identify ... 41
k3/list/identif.cpp see above: k2/identify ... 41
k3/list/main.cpp list of identifiers 52
k3/list/merge.cpp merging of lists 54
k3/list/splice.cpp splicing of lists 56
k3/vector/intvec.cpp example withint vector 49
k3/vector/strvec.cpp example withstring  vector 51
k4/div_adt.cpp abstract data types stack, deque, priority 71
queue
k4/mapl.cpp example for a map 80
k4/setm.cpp example for a set 77

Table A.2: Files for introductory examples (without makefiles and readme-files).

A.4.4 Files for applications and extensions

The files contained in Tablé.3 refer to the examples of Chapters 6 to 11. They

usually assume the files of Tablel.
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File Description Page
k6/mainset.cpp set algorithms 166
k7/mainseto.cpp overloaded operators for sets 184
k7/maph.cpp map with hash map 180
k8/crossref.cpp cross-reference 186
k8/permidx.cpp permuted index 188
k8/roget.dat thesaurus file 190
k8/thesaur.cpp program for the above 191
k9/all/strcvec.cpp string vector with index check 197
k9/a2/matmain.cpp example with matrix 201
k9/a2/matrix.h matrix class 198
k9/a2/matrix3d.h three-dimensional matrix 203
k9/a3/divmat.cpp various matrix models 210
k9/a3/matrices.h fixed matrix for different 206
memory models
k9/ad/sparsel.cpp sparse matrix (variation 1) 212
k9/ad/main.cpp example with sparse matrix 213
k9/ad/mattest.cpp run-time measurements 221
k9/ad/readme
k9/ad/stowatch.h stopwatch class
k9/ad/stowatch.cpp implementation of the above
k10/extsort.cpp external sorting 225
k10/extsort.h templates for external sorting 226
k10/extsortg.cpp external sorting with accelerator 230
k10/extsortg.h templates for the above 232
kll/analyse/gral.dat graph data 245
kll/analyse/gralu.dat graph data
kll/analyse/gra2.dat graph data 246
kll/analyse/mainint.cpp graph with integer edge weights 246
k11l/analyse/empty.cpp graph without edge weights 246
k11/dijkstra/gra2.dat graph data 246
k11/dijkstra/mainplace.cpp| shortest paths (1) in a graph (Figure 256
11.8)
k11/dijkstra/mdi.cpp shortest paths (2) in a graph
k11/dynpg/maindpq.cpp application of the dynamic 254
priority queue
k1l/toposort/main.cpp topological sorting 262
k11/toposort/topo.dat graph data 261

Table A.3: Files for applications and extensions.
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push_back() ,50
push_front() ,57

rbegin() , 50
rend() ,50
resize() ,50

Difference() , 164
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difference
HSet, 183
of sorted structured,37
symmetric,138 183
difference set, algorithi,64
difference_type , 46
Dijkstra algorithm, 256
distance between two points55
distance type ,32
distance type (derivation from itera-
tor), 61
distance() ,32
distances32
divides ,25
dynamic priority queue247
dynamic_priority_queue , 248

E
Empty (class),238
empty() ,47
end() , 30
equal() ,98
equality vs. equivalencel
equal_range() , 76,129
equal_to ,22
equivalence vs. equalitg,1
erase()

sequence48

set,76
Euclidian spacel55
exclusive or (set)]138 182
execution time of an algorithm,5

F
Fibonacci,158
fill)) , 111
filLn) 111
find()
set , 76
algorithm,89
find_end() ,90
find_first_of() , 92
find_if)  , 89
first , 19,79
for_each() ,87
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FORTRAN memory layout for matri-

ces,206
forward iterator34
forward_iterator_tag , 37
front() ,50
front_insert_iterator , 66

function adapterR4
function objects21

<functional> , 22,23, 25,27, 90
functor,seefunction objects
G

generate() ,112
generate_n() ,112
generating strings out of numbers,
269
generatorl12
generic programming}
gra_algo.h 258 263
graph,235
as BIpXfile, 271
output,244
read,245 268
Graph (class),238
Graph method, see alsocontainer
method
check() ,241
CountEdges() , 241
CyclesAndConnectivity() ,
242
greater , 22
greater_equal , 22

H
hash function170
index pairs215
hash function object 80
hash table170
header files28
heap,141, 251
Heapsort() , 149
HMap
class, 171
iterator,172
HMapmethod
begin() ,175

clear() ,176
end() ,175
erase() ,178
find) ,177

insert() ,177
max_size() ,179
operator[]() , 177
swap() , 180

hmap.h172

HSet (class),181

HSet methodssee alsaHMapmeth-

ods

operator+() ,182
operator+=() , 182
operator*() ,183
operator*=() , 183
operator-() ,183
operator-=() , 183
operator() , 183
operator*=() , 183

hset.h 181

I
identifier,40
_if ,87
implicit data types4, 45, 69
Includes()  (also for unsorted sets),
162

includes() (STL), 134
index check;195
index operator] 95
inheritance and STL196
inner product154
inner_product() , 154
inplace_merge() , 133
input iterator,33
input_iterator_tag , 36
insert()

multiset , 78

sequence48

set , 76
insert iteratorp4

and set operationg40
insert_iterator , 66
intersection
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HSet, 183
of sorted structures,36
Intersection() ,163
interval notation47
iota() ,101
istream iterator37
iterator,5, 29
adaptor35
back_insertp4
bidirectional,34, 36
category_33, 58
derivation of value and distance
types,61
distance32
forward,34
front_insert,66
inheriting properties63
input, 33
insert,64, 66
istream, 37
ostream40
output,34
random acces84
reverse random accesx§
state,30
iterator , 46
iterator_traits , 32
IterGreater , 249
iter_swap() ,105

K

key_compare , 75
key type ,75

L

IATEX and graphs271

length of a vector]155

less , 22,23

less_equal 22

lexicographical_compare() ,
151

<limits> , 258

linear searchl7

list ,52

list method see alssequence method

INDEX
assign() , 50
back() ,50
front() ,50
merge() , 55

pop_back() ,50
pop_front) ,55
push_back() ,50
push_front() , 55
rbegin() , 50
remove() ,55
remove_if() ,55

rend() ,50
resize() ,50
reverse() ,55
sort() ,55
splice() ,55
unique() ,55

list, singly-linked,9
logical_and , 25
logical_not ,25
logical_or ,25
lower_bound() , 76,128
M
make_heap() , 147
make_pair() , 20
map,78

as hash map,71

as sorted map4

multi-, 81

map methodsseeset methods

operator[]() , 79
value_comp() , 79
map typessee alsaset types
key_compare , 78
value_compare , 78

matrix, 197
memory models205
sparsezll
symmetric,206
three-dimensionak 02
two-dimensional198
max() , 150
max_element()
max_size() ,46

, 150

201
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memory models for matrice&05

merge,130

merge() , 54, 55, 130

mergesort()
min() , 150

min_element()

minus , 25
mismatch()

modulus , 25
multi-pass 34
multimap,81

multiplies
multiset,78

N

NDEBUG197

negate , 25

, 132

, 150

, 95

, 25

neighboring vertices270

next_permutation()

notl , 24
not2 , 26

not_equal_to
nth_element()

, 22
, 126

number of edges41

numeric_limits

O

O notation,15

, 258

occupation ratel 70, 179

Q) notation,18

open addressing,70
operator()() , 21
operator*() , 29,64
operator*() (HSet), 183
operator+()  (HSet), 182
operator++()  , 29, 64
operator-() (HSet), 183
operator®() (HSet), 183
operator!=() , 20, 29
operator<=() ,21
operator=() , 64
operator==() , 21,29
operator>() ,21
operator>=() ,21

operator[]()

, 34,53, 202 205

checkedVector , 196

, 152

map, 79
ostream iterato#0
output iterator34
output_iterator_tag , 36

P
pairs,pair , 19
partial template specializatio}1
partial_sort() ,125
partial_sort_copy() ,125
partial_sum() , 156
partition() ,121
path, shortesf256
permuted index] 87
Place , 254
plus , 25
pointer , 49
pointer_to_binary_function

27
pointer_to_unary_function
polymorphism and STL196
pop_back() ,50
pop_front) ,55
pop_heap() , 143
predicatesg6

prev_permutation() , 152
priority queue,’2
and external sorting,30
dynamic,247
ptrdiff t 32
ptr_fun , 27

push_back() ,50
push_front) ,55
push_heap() , 145

Q

queue,/0

R
random coordinate£,69

, 27

random numbers, generator fGr].2,

119
random access iteratd4
random_access_iterator_tag
37
random_shuffle() ,119



rbegin() , 35,47, 50
red-black trees}5
reference , 46
rel_ops , 20
remove()

algorithm,113

list, 55
remove_copy() ,113
remove_copy_if() ,113
remove_if() ,55,113
rend() , 35,47, 50
replace() , 109
replace_copy() ,109
replace_copy_if() , 109
replace_if() , 109
reserve() ,53
resize() ,50
reverse bidirectional iterato36
reverse iterato35
reverse random access iterafts,

reverse()

algorithm,116

list, 55
reverse_copy() ,116
reverse_iterator ,51

reversible container6
rotate() , 117
rotate_copy() , 117
run (external sortingR24

S
search() ,99
search_n() ,101

second , 19
sequenced?
sequence methodee alsocontainer
method
clear() ,48
erase() ,48
insert() ,48
set, 74

as hash set,81
as sorted sef/4
difference, 164
intersection163
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multi-, 78
operations on sorted structures,
134
subset of al162
symmetric differencel 64
union,162
set methodsee als@ontainer method
clear() ,76
count() ,76
equal_range() ,76
erase() ,76
find) ,76
insert() ,76
key_comp() ,76
lower_bound() ,76
upper_bound() ,76
value_comp() , 76
set operations] 61
set typessee alsa@ontainer types
key_compare , 75
key_type ,75
value_compare , 75
value_type ,75
setalgo.n162
set_difference() , 137
set_intersection() , 136
set_symmetric_difference() ,
138
set_union() , 135
shortest path?56
showseq.j57
showSequence() , 56
simple list,9
single pass34
size() ,46
size_type ,46
slist  (class)9
sort()
algorithm,122
list, 55
sorted subsequencex4
sort_heap() ,148
sorting
external 223
external (accelerated};30
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stable,123
sparse matrix211
sparseMatrix , class218
splice() , 55, 56
stable sorting123
stable_partition() ,121
stable_sort() , 123
stack,69
Stanford graphBas&,73
state of an iterato80
std::rel_ops , 20
stream iterator37
Subsequencelterator (class)226
subsequences, sort&tb4
subset162
swap()

algorithm,105

vector,47, 51
swap_ranges() ,106
symmetric difference

algorithm,164

HSet, 183

of sorted structured,38
symmetric matrix, memory layout,

206

Symmetric_Difference() , 164

T

thesaurus]90

time complexity,14, 15

topological sorting260

traits, 30

traits , 32

transform() , 107

transposed matrix206

travelling salesman problem (TSP),
17

typename , 26

U
unary_function , 22
unary_negate , 25
union
algorithm,162
Hset , 182
of sorted structures,35

Union() , 162
unique()

algorithm,115

list, 55
unique_copy() ,115
upper_bound() , 76,129
<utility> , 19
\

value semanticg
value type (derivation from iterator),

61
value_compare , 75
value_type , 46,75

map, 79

vector
length of a,155
with index check;195

vector , 49

vector adaptor] 97

vector method,see alsosequence

method

assign() ,50
at() ,53
back() ,50
capacity() ,53
front() , 50
operator[]() , 53
pop_back() ,50
push_back() ,50

rbegin() , 50
rend() ,50
reserve() ,53
resize() ,50
W
wrapper

for iterator,35
for vector,197

X
XOR (set),164
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